Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Maximizing phonon scattering efficiency by Cu₂Se alloying in AgCuTe thermoelectric materials

Lanwei Li^a, Wenya Zhai^a, Chao Wang^{*a}, Yanqun Chen^a, Shuyao Li^a, Pengya Fan^a, Zhenxiang Cheng^b, Gui Yang^c, Jianli Wang^{*a}, and Yanli Mao^{*d}

^a Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng, 475004, China

^b Institute for Superconducting and Electronic Materials, University of Wollongong, Squires Way, North Wollongong, Australia.

^c School of Mechanical and Electrical Engineering, Chuzhou University, Chuzhou 239000, China.

^d International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng, 475004, China.

* corresponding author: wangchao@vip.henu.edu.cn; jianli@uow.edu.au; ylmao@henu.edu.cn

Results and Discussion:

The Lorenz number

In our work, the Lorenz number used in the calculation of κ_e is obtained based on the single parabolic band:

$$L = \left(\frac{k_B}{e}\right)^2 \left(\frac{(r+7/2)F_{r+5/2}(\eta)}{(r+3/2)F_{r+1/2}(\eta)} - \left[\frac{(r+5/2)F_{r+3/2}(\eta)}{(r+3/2)F_{r+1/2}(\eta)}\right]^2\right)$$
(1)

In the above equation, $F_n(\eta)$ is defined as

$$F_n(\eta) = \int_0^\infty \frac{\chi^n}{1 + e^{\chi - \eta}} d\chi$$
⁽²⁾

$$\eta = \frac{E_f}{k_B T} \tag{3}$$

Where $F_n(\eta)$ is the n-order Fermi integral, and η is called the reduced Fermi energy. η can be obtained by the following formula:

$$S = \pm \frac{k_B}{e} \left(\frac{(r+5/2)F_{r+3/2}(\eta)}{(r+3/2)F_{r+1/2}(\eta)} - \eta \right)$$
(4)

In the above equation, η can be obtained by the measured Seebeck coefficients. The scattering factor r is -1/2 in acoustic phonon scattering.

The modified Cahill's model calculation

For AgCuTe, it is widely accepted that the transverse component of sound velocity is reduced or completely vanished at higher temperature due to its liquid-like behavior^{1,2,3}. Because AgCuTe is a liquid-like material, the modified Cahill's model is used to calculate the minimum lattice thermal conductivity⁴:

$$\kappa_{\min} = \frac{1}{2} \left(\frac{\pi}{6} \right)^{1/3} \kappa_B V^{-2/3} \left(v_1 \right)$$
 (1)

where κ_B is the Boltzmann constant, V is the average volume per atom and v_1 is the longitudinal sound velocity. The v_1 can be calculated by⁵

$$v_1 = \sqrt{\frac{B+4/3G}{\rho}} \tag{2}$$

Where *B* is the bulk modulus, *G* is the shear modulus and ρ is the density of a compound. Based on statistical-learning prediction of the bulk and shear modulus of cubic AgCuTe in the materials project⁶, we get that *B* is 57.3 and *G* is 23.6. Therefore, the minimum lattice thermal conductivity was calculated to be ~0.21 Wm⁻¹K⁻¹ for AgCuTe.

Fig. S1 The percentage diagram of the EDS element content of the secondary phase in AgCuTe-1%Cu₂Se_.

Fig. S2 The calculation results of the phases content in the AgCuTe - x%Cu₂Se (x = 0, 0.5, 1 and 3) sample.

Fig. S3 a) Comparison of lattice thermal conductivity (κ_L) as a function of temperature in AgCuTe-based materials^{7,8,9}; b) comparison of temperature-dependent average κ_L value in AgCuTe-based materials. Among them, due to the lower test temperature of AgCu_{0.99}Ni_{0.01}Te⁷, it only calculated the average κ_L from 523 K to 582 K.

Fig. S4 Synchrotron powder diffraction (SPD) patterns of AgCuTe collected with the temperature increasing from 303 K to 653 K.

References

 Kim, H.; Ballikaya, S.; Chi, H.; Ahn, J.-P.; Ahn, K.; Uher, C.; Kaviany, M., Ultralow thermal conductivity of Cu₂Se by atomic fluidity and structure distortion. *Acta Mater.* 2015, 86 (0), 247-253.

2、Zhao, L.; Wang, X.; Wang, J.; Cheng, Z.; Dou, S.; Wang, J.; Liu, L., Superior intrinsic thermoelectric performance with ZT of 1.8 in single-crystal and melt quenched highly dense Cu_{2-x}Se bulks. *Sci. Rep.* **2015**, *5*, 7671.

3、 Chatov, V., Ionic conduction and diffusion of copper in copper selenide. *Sov. Phys. Semicond.* **1980**, 14 (4), 474-475.

4、 Butt, S.; Xu, W.; Farooq, M. U.; Ren, G. K.; Zhang, Q.; Zhu, Y.; Khan, S. U. and others, Enhanced thermoelectricity in high-temperature β-phase copper (I) selenides embedded with Cu_2Te nanoclusters. *ACS Appl. Mater. Interfaces.* **2016**, 8, 15196-15204.

5、 Jia, T.; Chen, G.; Zhang, Y., Lattice thermal conductivity evaluated using elastic properties. *Phys. Rev. B.* **2017**, 95(15), 155206.

6、 de Jong, M.; Chen, W.; Notestine, R.; Persson, K.; Ceder, G.; Jain, A.; Asta, M.; Gamst A, A., Statistical learning framework for materials science: Application to elastic moduli of k-nary inorganic polycrystalline compounds. *Sci. Rep.* **2016**, 6, 34256.

7、 Zhang, B.; Yang, H.; Tian, Z.; Wang, J., Effect of Ni doping on thermoelectric properties of Ag₂Te-Cu₂Te composite material. *J. Alloy. Compd.* **2021**, 870, 159425.

8、 Jiang, J.; Zhu, H.; Niu, Y.; Zhu, Q.; Song, S.; Zhou, T.; Wang, C.; Ren, Z., Achieving high room-temperature thermoelectric performance in cubic AgCuTe. *J. Mater. Chem. A.* **2020**, 8, 4790-4799.

9、 Deng, S.; Jiang, X.; Chen, L.; Qi, N.; Tang, X.; Chen, Z., Ultralow thermal conductivity and high thermoelectric performance in AgCuTe_{1-x}Se_x through Isoelectronic Substitution. *ACS Appl. Mater. Interfaces.* **2021**, 13, 868-877.