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Results and Discussion:
The Lorenz number

In our work, the Lorenz number used in the calculation of x, is obtained based on the single

parabolic band:
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In the above equation, F), (77) is defined as
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Where F), (77) is the n-order Fermi integral, and 77 is called the reduced Fermi energy. 77 can be

obtained by the following formula:
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In the above equation, 77 can be obtained by the measured Seebeck coefficients. The scattering

factor » is —1/2 in acoustic phonon scattering.

The modified Cahill’s model calculation

For AgCuTe, it is widely accepted that the transverse component of sound velocity is reduced or
completely vanished at higher temperature due to its liquid-like behavior!?3. Because AgCuTe is a
liquid-like material, the modified Cahill’s model is used to calculate the minimum lattice thermal

conductivity*:
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where K, is the Boltzmann constant, } is the average volume per atom and v, is the longitudinal

sound velocity. The v, can be calculated by>
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Where B is the bulk modulus, G is the shear modulus and p is the density of a compound. Based

on statistical-learning prediction of the bulk and shear modulus of cubic AgCuTe in the materials
project®, we get that B is 57.3 and G is 23.6. Therefore, the minimum lattice thermal conductivity

was calculated to be ~0.21 Wm'K"! for AgCuTe.
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Ag 0.90 0.71 16.43 Ag 65.38 67.23 1.90
Te 4948 32.95 1.98 Te 31.56 2744 3.65
Cu 49.62 66.34 392 Cu 3.05 5:33 20.03

Fig. S1 The percentage diagram of the EDS element content of the secondary phase in AgCuTe-
1%Cu,Se.
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Fig. S2 The calculation results of the phases content in the AgCuTe - x%Cu,Se (x =0, 0.5, 1
and 3) sample.
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Fig. S3 a) Comparison of lattice thermal conductivity (k. ) as a function of temperature in
AgCuTe-based materials”#; b) comparison of temperature-dependent average x; value in
AgCuTe-based materials. Among them, due to the lower test temperature of AgCugg9Nigo;Te, it
only calculated the average k; from 523 K to 582 K.
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Fig. S4 Synchrotron powder diffraction (SPD) patterns of AgCuTe collected with the
temperature increasing from 303 K to 653 K.
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