Electronic Supplementary Information (ESI)

Weak Pb–O of Confined [Pb–O₄] in Pyramidal Sillenitetype Bi₁₂PbO₂₀ for Enhanced Electrochemical Ozone Production

Huaijie Shi^{a,#}, Ge Feng^{a,#}, Suiqin Li^a, Jia Liu^a, Xinying Yang^a, Ye Li^b, Ye Lu^b, Xing Zhong^{a,*}, Shibin Wang^{a,*}, Jianguo Wang^{a,*}

^a Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, China.

^b Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.

H. J. Shi and G. Feng contribute to this work equally

* Correspondence and requests for materials should be addressed to X. Z. (email: zhongx@zjut.edu.cn), or to S. B. W. (email: wangshibin@zjut.edu.cn), J. G. W. (email: jgw@zjut.edu.cn).

Contents

Fig. S1. SEM image of Bi₂O₃ flower. (Page S4)

Fig. S2. SEM images of Bi₁₂PbO₂₀ at different reaction time. (Page S5)

Fig. S3. SEM image of Bi₁₂PbO₂₀-no NaOH. (Page S6)

Fig. S4. SEM image of Bi₁₂PbO₂₀-no PVP. (Page S7)

Fig. S5. SEM images of Bi₁₂PbO₂₀-1, 2, 4 and 5. (Page S8)

Table S1. Element contents of $Bi_{12}PbO_{20}$ -1, 2, 3, 4 and 5 by ICP for Bi, Pb and XPS analysis for O content (mol. %). (Page S9)

Fig. S6. The FFT pattern of $Bi_{12}PbO_{20}$ -3 by STEM. (Page S10)

Fig. S7. XRD pattern of $Bi_{12}PbO_{20}$ -1, 2, 3, 4, 5 and Bi_2O_3 . (Page S11)

Fig. S8. N₂ adsorption-desorption isotherms of Bi₁₂PbO₂₀-1, 2, 3, 4, 5 and Bi₂O₃. (Page S12)

Fig. S9. The pore size distribution of $Bi_{12}PbO_{20}$ -1, 2, 3, 4, 5 and $Bi_{2}O_{3}$. (Page S13)

Table S2. Surface area and pore volume of Bi₁₂PbO₂₀-1, 2, 3, 4, 5 and Bi₂O₃. (Page S14)

Fig. S10. Electron paramagnetic resonance test of β -PbO₂. (Page S15)

Fig. S11. XPS survey spectra of Bi_2O_3 , $Bi_{12}PbO_{20}$ -1, 2, 3, 4, 5 and β -PbO_{2.} (Page S16)

Fig. S12. High-resolution XPS spectra of Pb 4f for $Bi_{12}PbO_{20}$ -1, 2, 3, 4, 5 and β -PbO₂. (Page S17)

Fig. S13. High-resolution XPS spectra of Bi 4f for Bi₂O₃, Bi₁₂PbO₂₀-1, 2, 3, 4 and 5. (Page S18)

Fig. S14. High-resolution XPS spectra of O 1s for Bi_2O_3 , $Bi_{12}PbO_{20}$ -1, 2, 3, 4, 5 and β -PbO₂. (Page S19)

Table. S3. Summary of functional groups for Bi₁₂PbO₂₀-3 obtained from XPS analysis. (Page S20)

Fig. S15. Steady state polarization curves of $Bi_{12}PbO_{20}$ -n (n = 1, 2, 3, 4, 5), β -PbO₂, and Bi_2O_3 after 2.12 V vs.RHE. (Page S21)

Fig. S16. Steady-state polarization curves for Bi₁₂PbO₂₀-3, Bi₁₂PbO₂₀-no NaOH and no PVP. (Page S22)

Table. S4. Summary of the Electrochemical Properties of prepared Electrode. (Page S23)

Fig. S17. Qualitative concentration test of ozone water, the color depth represents the concentration of ozone. Give a qualitative comparison on the concentration of dissolved ozone. (Page S24)

Table. S5. The anode voltage corresponding to different cell voltage. (Page S25)

Fig. S18. The standard curve of ozonated water concentration in saturated K_2SO_4 solution. (Page S26)

Fig. S19. Ozone Water concentrations between the $Bi_{12}PbO_{20}$ -3, $Bi_{12}PbO_{20}$ -no NaOH, $Bi_{12}PbO_{20}$ -no PVP and β -PbO₂. (Page S27)

Fig. S20. Moistened starch potassium iodide paper giving a qualitative comparison on the EOP of $Bi_{12}PbO_{20}$ -3 at current density of 50 mA cm⁻². (Page S28)

Fig. S21. The FE₀₂ of Bi₂O₃, Bi₁₂PbO₂₀-n (n=1, 2, 3, 4 and 5) at 50 mA cm⁻². (Page S29)

Fig. S22. Ozone Gas concentrations between the $Bi_{12}PbO_{20}$ -3, $Bi_{12}PbO_{20}$ -no NaOH, $Bi_{12}PbO_{20}$ -no PVP and β -PbO₂ (Page S30)

Table. S6. The performance comparison of $Bi_{12}PbO_{20}$ -3 with other electrocatalysts toward for EOP. (Page S31)

Fig. S23. CV at different scan rates in the region of 20-120 mV vs. RHE in saturated K₂SO₄ of Bi₂O₃, Bi₁₂PbO₂₀-1, 2, 3, 4 and 5. (Page S32)

Fig. S24. Different scan rates to measure capacitive currents for Bi_2O_3 , $Bi_{12}PbO_{20}$ -1, 2, 3, 4 and 5. (Page S33)

Fig. S25. Nyquist plots of Bi₂O₃, Bi₁₂PbO₂₀-1, 2, 3, 4 and 5. (Page S34)

Fig. S26. ESR measurement results of DMPO- \cdot OH for Bi₁₂PbO₂₀-3 and β -PbO_{2.} (Page S35)

Fig. S27. SEM image of the $Bi_{12}PbO_{20}$ -3 after 100 h constant potential test for EOP. (Page S36)

Fig. S28. XRD pattern comparison before and after stability the Bi₁₂PbO₂₀-3. (Page S37)

Table. S7. Element contents of electrolyte after the reaction by ICP for Bi and Pb. (Page S38)Fig. S29. (a) The photograph of the DEMS technique; (b) The photograph of the electrolysis cell for DMES measurement. (Page S39)

Fig. S30. The quantitative analysis of O₂ and O₃ by DEMS. (Page S40)

Fig. S31. (a) The mass spectrometry measurements result of $O_{3;}$ (b-d) Differential electrochemical mass spectrometry measurements of m/z=50 ($^{16}O^{18}O^{16}O$), m/z=52 ($^{18}O^{18}O^{16}O$), m/z=54 ($^{18}O^{18}O^{18}O$). (Page S41)

Fig. S32. (a) The Mass spectrometry measurements result of $O_{2;}$ (b) Differential electrochemical mass spectrometry measurements of m/z=36 (¹⁸O¹⁸O), m/z=34 (¹⁸O¹⁶O), m/z=32 (¹⁶O¹⁶O). (Page S42)

Fig. S33. (a)Bulk structure of Bi_2O_3 ; (b) Bulk structure of $Bi_{12}PbO_{20}$. The purple spheres represent Bi atoms, the gray spheres represent Pb atoms, the red spheres represent O atoms, and the yellow spheres represent O atoms to make the model more intuitive. (Page S43)

Fig. S34. The optimized structure as well as the corresponding energies with different oxygen vacancy sites. (Page S44)

Fig. S35. (a) COHP analysis of $Bi_{12}PbO_{20}$ and $Bi_{12}PbO_{20}$ -1Ov-opt; (b) Calculated charge density differences for $Bi_{12}PbO_{20}$ bulk with different oxygen vacancy sites. (Page S45)

Fig. S36. Photograph of the electrochemical degradation system. (Page S46)

Fig. S1. SEM image of Bi₂O₃ flower.

Fig. S2. SEM images of $Bi_{12}PbO_{20}$ at different reaction time. (a) 0.5 h; (b) 2 h; (c) 4 h; (d) 6 h.

Fig. S3. SEM image of $Bi_{12}PbO_{20}$ -no NaOH.

Fig. S4. SEM image of Bi₁₂PbO₂₀-no PVP.

Fig. S5. SEM images of $Bi_{12}PbO_{20}$ -1, 2, 4 and 5.

Samples	Pb loading (mol. %)	Bi loading (mol. %)	O loading (mol. %)
Bi ₁₂ PbO ₂₀ -1	0.98	37.39	61.63
Bi ₁₂ PbO ₂₀ -2	1.22	37.30	61.48
Bi ₁₂ PbO ₂₀ -3	2.00	37.08	60.92
Bi ₁₂ PbO ₂₀ -4	2.44	36.85	60.71
Bi ₁₂ PbO ₂₀ -5	3.79	36.30	59.91

Table. S1. Element contents of $Bi_{12}PbO_{20}$ -1, 2, 3, 4 and 5 by ICP for Bi, Pb and XPS analysis for O content (mol. %).

Fig. S6. The FFT pattern of $Bi_{12}PbO_{20}$ -3 by STEM.

Fig. S7. XRD pattern of $Bi_{12}PbO_{20}$ -1, 2, 3, 4, 5 and $Bi_{2}O_{3}$.

Fig. S8. N_2 adsorption-desorption isotherms of $Bi_{12}PbO_{20}$ -1, 2, 3, 4, 5 and Bi_2O_3 .

Fig. S9. The pore size distribution of $Bi_{12}PbO_{20}$ -1, 2, 3, 4, 5 and Bi_2O_3 .

Samples	Surface area (m ² g ⁻¹)	Total pore Volume (cm ³ g ⁻ 1)
Bi ₂ O ₃	5.84	0.008180
Bi ₁₂ PbO ₂₀ -1	2.78	0.002434
Bi ₁₂ PbO ₂₀ -2	3.64	0.003936
Bi ₁₂ PbO ₂₀ -3	4.02	0.003094
Bi ₁₂ PbO ₂₀ -4	3.35	0.003651
Bi ₁₂ PbO ₂₀ -5	4.28	0.002934

Table. S2. Surface area and pore volume of $Bi_{12}PbO_{20}$ -1, 2, 3, 4, 5 and Bi_2O_3 .

Fig. S10. Electron paramagnetic resonance test of β -PbO₂

Fig. S11. XPS survey spectra of Bi_2O_3 , $Bi_{12}PbO_{20}$ -1, 2, 3, 4, 5 and β -PbO_{2.}

Fig. S12. High-resolution XPS spectra of Pb 4f for $Bi_{12}PbO_{20}$ -1, 2, 3, 4, 5 and β -PbO₂.

Fig. S13. High-resolution XPS spectra of Bi 4f for Bi_2O_3 , $Bi_{12}PbO_{20}$ -1, 2, 3, 4 and 5.

Fig. S14. High-resolution XPS spectra of O 1s for Bi_2O_3 , $Bi_{12}PbO_{20}$ -1, 2, 3, 4, 5 and β -PbO₂.

Pb 4f functional groups	Binding energy (eV)	Relative intensity (%)
Pb ⁴⁺	138.1 142.9	68.83
Pb^0	137.5 142.3	31.17
O 1s functional groups	Binding energy (eV)	Relative intensity (%)
Pb-O	529.0	12.95
Bi-O	529.8	46.90
Adsorb O	531.2	29.39
ОН	532.3	10.75

Table. S3. Summary of functional groups for $Bi_{12}PbO_{20}$ -3 obtained from XPS analysis.

Fig. S15. Steady state polarization curves of $Bi_{12}PbO_{20}$ -n (n = 1, 2, 3, 4, 5), β -PbO₂, and Bi_2O_3 after 2.12 V vs.RHE

Fig. S16. Steady-state polarization curves for Bi₁₂PbO₂₀-3, Bi₁₂PbO₂₀-no NaOH and no PVP.

Catalysts	Tafel Slope (mV dec ⁻¹)	J _{0, geometric} (mA cm ⁻²)	C _{dl} (mF cm ⁻²)	Relative surface area	J _{0, normalized} (mA cm ⁻²)
Bi ₂ O ₃	548	2052	2.2	1.00	2052
Bi ₁₂ PbO ₂₀ -1	621	2184	5.9	2.68	780
Bi ₁₂ PbO ₂₀ -2	637	2172	4.6	2.09	1039
Bi ₁₂ PbO ₂₀ -3	667	2263	4.5	2.05	1104
Bi ₁₂ PbO ₂₀ -4	617	2286	3.1	1.41	1621
Bi ₁₂ PbO ₂₀ -5	580	2203	2.9	1.32	1669

Table. S4. Summary of the Electrochemical Properties of prepared Electrode.

Fig. S17. Qualitative concentration test of ozone water, the color depth represents the concentration of ozone. Give a qualitative comparison on the concentration of dissolved ozone.

Cell voltage (V)	Anode voltage (V)
1.5	1.315
2.0	1.542
2.5	1.846
3.0	2.159
3.5	2.390

Table. S5. The anode voltage corresponding to different cell voltage.

Fig. S18. The standard curve of ozonated water concentration in saturated K₂SO₄ solution.

Fig. S19. Ozone Water concentrations between the $Bi_{12}PbO_{20}$ -3, $Bi_{12}PbO_{20}$ -no NaOH, $Bi_{12}PbO_{20}$ -no PVP and β -PbO₂.

Fig. S20. The FE_{O2} of Bi_2O_3 , $Bi_{12}PbO_x$ -n (n=1, 2, 3, 4 and 5) at 50 mA cm⁻²

Fig. S21. Moistened starch potassium iodide paper giving a qualitative comparison on the EOP of $Bi_{12}PbO_{20}$ -3 at current density of 50 mA cm⁻².

Fig. S22. Ozone Gas concentrations between the $Bi_{12}PbO_{20}$ -3, $Bi_{12}PbO_{20}$ -no NaOH, $Bi_{12}PbO_{20}$ -no PVP and β -PbO₂.

Catalysts	Electrolyte	Temperatur e	FE (%)	Ref.
Bi ₁₂ PbO ₂₀ -3	Neutral media	25 °C	15.1	This work
β-PbO ₂ -150 NRs	Neutral media	25 °C	11.8	J. Mater. Chem. A, 9010– 9017 (2021)
Pt-TaO _x /Ti	Neutral media	25 °C	11.7	Electrochem. Commun. 8 , 1263-1269 (2006)
Si/TiO _x /Pt/TiO ₂	Acid medium	25 °C	9	J. Electrochem. Soc. 157 , F30 (2010).
PtZn/Zn-N-C	Neutral media	25 °C	4.2	J. Energy Chem. 51 , 312- 322 (2020)
Pt-Reticulater Vitreous Carbon	Neutral media	25 °C	1.6	J. Electrochem. Soc. 153 D207-D212 (2006)

Table. S6. The performance comparison of $Bi_{12}PbO_{20}$ -3 with other electrocatalysts toward for EOP.

Fig. S23. CV at different scan rates in the region of 20-120 mV vs. RHE in saturated K_2SO_4 of Bi_2O_3 , $Bi_{12}PbO_{20}$ -1, 2, 3, 4 and 5.

Fig. S24. Different scan rates to measure capacitive currents for Bi_2O_3 , $Bi_{12}PbO_{20}$ -1, 2, 3, 4 and 5.

Fig. S25. Nyquist plots of Bi_2O_3 , $Bi_{12}PbO_{20}$ -1, 2, 3, 4 and 5.

Fig. S26. ESR measurement results of DMPO-·OH for $Bi_{12}PbO_{20}$ -3 and β -PbO₂.

Fig. S27. SEM image of the $Bi_{12}PbO_{20}$ -3 after 100 h constant potential test for EOP.

Fig. S28. XRD pattern comparison before and after stability the $Bi_{12}PbO_{20}$ -3.

Table. S7. Element contents of electrolyte after the reaction by ICP for Bi and Pb

Samples	Pb (ppm)	Bi (ppm)	
The electrolyte	0.0144	0.0212	
after the reaction	0.0144	0.0312	

Fig. S29. (a) The photograph of the DEMS technique; (b) The photograph of the electrolysis cell for DMES measurement.

Fig. S30. The quantitative analysis of O_2 and O_3 by DEMS.

Fig. S31. (a) The mass spectrometry measurements result of $O_{3;}$ (b-d) Differential electrochemical mass spectrometry measurements of m/z=50 ($^{16}O^{18}O^{16}O$), m/z=52 ($^{18}O^{18}O^{16}O$), m/z=54 ($^{18}O^{18}O^{18}O$).

Fig. S32. (a) The Mass spectrometry measurements result of $O_{2;}$ (b) Differential electrochemical mass spectrometry measurements of m/z=36 (¹⁸O¹⁸O), m/z=34 (¹⁸O¹⁶O), m/z=32 (¹⁶O¹⁶O).

Fig. S33. (a)Bulk structure of Bi_2O_3 ; (b) Bulk structure of $Bi_{12}PbO_{20}$. The purple spheres represent Bi atoms, the gray spheres represent Pb atoms, the red spheres represent O atoms, and the yellow spheres represent O atoms to make the model more intuitive.

Fig. S34. The optimized structure as well as the corresponding energies with different oxygen vacancy sites.

Fig. S35. (a) COHP analysis of $Bi_{12}PbO_{20}$ and $Bi_{12}PbO_{20}$ -1Ov-opt; (b) Calculated charge density differences for $Bi_{12}PbO_{20}$ bulk with different oxygen vacancy sites.

Fig. S36. Photograph of the electrochemical degradation system.