Supplementary Information

Highly Dispersed Pt Nanoparticles on 2D MoS₂ Nanosheets for

Efficient and Stable Hydrogen Evolution Reaction

Yaru Li, Shuaiqi Wang, Youdi Hu, Xiaoze Zhou, Meng Zhang, Xiaoyu Jia, Yi Yang, Bo-Lin Lin and Gang Chen^{*} School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

*E-mail: <u>gchen@shanghaitech.edu.cn</u>

Fig. S1 XRD pattern of the E-MoS₂ film obtained by vacuum filtration and the MoS₂ powder. Inset: the digital picture of the E-MoS₂ film.

Fig. S2 (a) XPS spectra of Mo 3d and S 2s for E-MoS₂. (b) XPS spectra of S 3p for E-MoS₂.

Fig. S3 (a) The size distribution of the Pt NPs on E-MoS₂-Pt. (b) The size distribution of the Pt NPs on E-MoS₂-Pt-r.

Fig. S4 Raman spectra of E-MoS₂, E-MoS₂-Pt and E-MoS₂-Pt-r.

Fig. S5 The selected area electron diffraction (SAED) pattern of E-MoS₂-Pt. The marked red diffraction ring corresponds to the lattice spacing of d = 0.27 nm for MoS₂ (100) and the yellow ring corresponds to d = 0.22 nm for Pt (111).

Fig. S6 The SAED pattern of E-MoS₂-Pt-r. The marked red diffraction ring corresponds to the lattice spacing of d = 0.27 nm for MoS₂ (100) and the yellow ring corresponds to d = 0.22 nm for Pt (111).

Fig. S7 (a) Atomic force microscope (AFM) image of the E-MoS₂ nanosheet. (b) The corresponding Kelvin probe force microscopy (KPFM) image of the E-MoS₂ nanosheet.

Fig. S8 (a) AFM image of E-MoS₂-Pt nanosheets. (b) The corresponding KPFM image of the E-MoS₂-Pt nanosheet.

Fig. S9 (a) The polarization curves of E-MoS₂, the commercial Pt/C (20 wt%) and E-MoS₂-Pt for the Pt mass ratios of 0.01 (E-MoS₂-Pt-1), 0.02 (E-MoS₂-Pt-2), 0.04 (E-MoS₂-Pt-4), 0.06 (E-MoS₂-Pt-6), 0.08 (E-MoS₂-Pt-8) and 0.1 (E-MoS₂-Pt-10) in the 0.5 M H₂SO₄ solution. (b) The corresponding Tafel pots derived from (a).

Fig. S10 (a) The polarization curves of E-MoS₂, the commercial Pt/C (20 wt%) and E-MoS₂-Pt-r for the Pt mass ratios of 0.01 (E-MoS₂-Pt-r-1), 0.02 (E-MoS₂-Pt-r-2), 0.04 (E-MoS₂-Pt-r-4) and 0.06 (E-MoS₂-Pt-r-6) in the 0.5 M H₂SO₄ solution. (b) The corresponding Tafel plots derived from (a).

Fig. S11 The polarization curves of E-MoS₂-Pt taken initially and after 1000 cycles (from -0.1 V to -0.3 V vs. RHE).

Fig. S12 XPS analysis of the binding energy of Pt in E-MoS₂-Pt taken after 1000 cycles (from -0.1 V to -0.3 V vs. RHE).

Table S1. Electrochemical impedance parameters obtained by fitting the Nyquist plots to the equivalent circuit model in Fig. 4c.

to the equivalent ene	$P_{\rm c}$ contract model in Fig. 40.				
Sample	R _s /Ω	R_{ct}/Ω	CPE-T	CPE-P	
E-MoS ₂	9.829	25712	0.00018	0.669	
E-MoS ₂ -Pt	7.116	98.44	0.00111	0.79506	
E-MoS ₂ -Pt-r	7.105	12.67	0.0229	0.44486	
Pt/C	7.009	6.682	0.02489	0.6519	

Table S2. Comparisons of the HER performance of E-MoS₂-Pt-r with other related catalysts.

Catalyst	η / mV @ 10 mA cm ⁻²	Tafel / mV dec ⁻¹	Reference
Pt-MoS ₂	~140	96	1
Mo ₂ TiC ₂ T _x -Pt	30	30	2
10%Pd-MoS ₂	72	63	3
Pt-1T- ^S MoS ₂	223	57	4
Pt-1T' MoS ₂	180	88	5
O-MoS ₂ @Pt	144	68	6
Pt-SAs/MoS ₂	59	31	7
Pt/np-Co _{0.85} Se	55	35	8
Pt@PCM	105	64	9
SV-MoS ₂	170	60	10
MoN-NC	62	54	11
MoS ₂ /graphene	137	49	12
Co (10.4)/Se-MoS2-NF	104	67	13
E-MoS ₂ -Pt-r	38	29	this work

Reference

- 1 J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren and X. Bao, *Energy Environ. Sci.*, 2015, **8**, 1594-1601.
- 2 J. Zhang, Y. Zhao, X. Guo, C. Chen, C.-L. Dong, R.-S. Liu, C.-P. Han, Y. Li, Y. Gogotsi and G. Wang, *Nat. Catal.*, 2018, **1**, 985-992.
- 3 Z. Luo, Y. Ouyang, H. Zhang, M. Xiao, J. Ge, Z. Jiang, J. Wang, D. Tang, X. Cao, C. Liu and W. Xing, *Nat. Commun.*, 2018, **9**, 2120.
- 4 T. H. M. Lau, S. Wu, R. Kato, T.-S. Wu, J. Kulhavý, J. Mo, J. Zheng, J. S. Foord, Y.-L. Soo, K. Suenaga, M. T. Darby and S. C. E. Tsang, *ACS Catal.*, 2019, 9, 7527-7534.
- 5 C. Wu, D. Li, S. Ding, Z. U. Rehman, Q. Liu, S. Chen, B. Zhang and L. Song, J. *Phys. Chem. Lett.*, 2019, **10**, 6081-6087.
- 6 F. Gong, S. Ye, M. Liu, J. Zhang, L. Gong, G. Zeng, E. Meng, P. Su, K. Xie, Y. Zhang and J. Liu, *Nano Energy*, 2020, 78, 105284.
- 7 S. Qi, J. He, J. Liu, H. Wang, M. Wu, F. Li, D. Wu, X. Li and J. Ma, *Nat. Commun.*, 2020, **31**, 4558.
- 8 K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng, Y. Zhao, Y. R. Lu, T. S. Chan, F. M. F. de Groot and Y. Tan, *Nat. Commun.*, 2019, **10**, 1743.
- 9 H. B. Zhang, P. F. An, W. Zhou, B. Y. Guan, P. Zhang, J. C. Dong and X. W. Lou, *Sci. Adv.*, 2018, 4, 9.
- 10 H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov and X. Zheng, *Nat. Mater.*, 2016, 15, 364.
- 11 Y. Zhu, G. Chen, X. Xu, G. Yang, M. Liu and Z. Shao, ACS Catal., 2017, 7, 3540-3547.
- 12 P. Xiong, R. Ma, N. Sakai, L. Nurdiwijayanto and T. Sasaki, ACS Energy Lett., 2018, 3, 997-1005.
- 13 Z. Zheng, L. Yu, M. Gao, X. Chen, W. Zhou, C. Ma, L. Wu, J. Zhu, X. Meng, J. Hu, Y. Tu, S. Wu, J. Mao, Z. Tian and D. Deng, *Nat. Commun.*, 2020, **11**, 3315.