Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. Electronic & ipp@erherRaryalr&orciettion (Electronic for a construction of the construc

ELECTRONIC SUPPORTING INFORMATION

Long-chain fluorocarbon driven hybrid solid polymer electrolyte for

lithium metal battery

Shuai Hao,^{ab} Lei Li,^a Wendong Cheng,^a Qiwen Ran,^a Yuyao Ji,^a Yuxuan Wu,^a Jinsheng Huo,^a Yingchun Yang^{*b} and Xingquan Liu^{*a}

^a School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China. E-mail: Lxquan@uestc.edu.cn

^b College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China. E-mail: yangyingchun@cuit.edu.cn Additional figures and tables

Fig. S1. Nyquist plots of P(DFMA-*co*-MMA)-xSCN-LiTFSI electrolyte membranes at 25 °C, which were prepared with various contents of SCN in P(DFMA-*co*-MMA).

Fig. S2. The 200 cycles of Li symmetric cells with different ratios of DFMA and MMA.

Fig. S3. The 50 cycles of (a) bare Li and (b) PDDA-TFSI@Li symmetric cells with LFSPE.

Solid electrolytes	Ionic conductivity (S cm ⁻¹)	Electrochemical windows	Battery configuration	Refs.
LEODE	$(78 \times 104 (35 \circ c))$	4 712 M	LCO/LFP/ NCM811 LFP LFP Li4Ti5O12 LFP LFP LFP LFP	This
LFSPE	$6./8 \times 10^{-4} (25 \text{ °C})$	4./13 V	NCM811	work
PSF-PEO ₃₅ +LiTFSI+SCN	1.6 × 10 ⁻⁴ (25 °C)	4.2 V	LFP	1
PIL-SCN-PCE	6.54 × 10 ⁻⁴ (25 °C)	5.4 V	LFP	2
C-PCE	2.1 × 10 ⁻⁴ (25 °C)	4.5 V	Li ₄ Ti ₅ O ₁₂	3
PEO-SCN	1.9 × 10 ⁻⁴ (25 °C)	4.7 V	LFP	4
SN-SPE	4.6 × 10 ^{−4} (25 °C)	4.6 V	LFP	5
PEO/PVDF/LiClO ₄ /	2.8 × 10 ⁻⁵ (25 °C)	4.5 V	LFP	6
PEO–SN ₂₅ – LiTFSI ₁₀ –GF	2.85 × 10 ⁻⁴ (25 °C)	5.5 V	LFP	7
PEO-SN-LiTFSI	3.38 × 10 ⁻⁴ (25 °C)	4.8 V	LFP	8
PIPCE	~3.1 × 10 ⁻⁴ (30 °C)	4.97 V	NCM532	9
TXE-SN-LiDFOB	1.14 × 10 ⁻⁴ (30 °C)	4.5 V	LCO	10
SN-PC-PEGDGE	1.4 × 10 ⁻⁵ (25 °C)	-	-	11
CPE-SCN	2.57 × 10 ⁻⁴ (30 °C)	4.7 V	LFP/NCM111	12
DLPE	1.54 × 10 ⁻⁴ (20 °C)	5 V	LFP/NCM811	13
PVA/PAN/SN/LAT P/LiTFSI	1.13 × 10 ⁻⁴ (25 °C)	5.1 V	LFP	14
SPI-LAGP-SPI	1.4 × 10 ⁻⁴ (25 °C)	4.8 V	LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂	15
PEM-PEG3A	3.41 × 10 ⁻⁴ (21 °C)	4.5 V	LFP	16
PPC-SCN	2.18 × 10 ⁻⁴ (25 °C)	4.7 V	LFP	17
PCL/SN/PAN	4 × 10 ⁻⁴ (25 °C)	4.5 V	LFP	18
N-PCPE	5.7 × 10 ⁻⁴ (25 °C)	>2.7 V	LCO	19
PEO-SN	1.19 × 10 ⁻⁴ (25 °C)	5 V	NCM811	20
PEO/LiTFSI/SN/ LAO	1.36 × 10 ⁻⁵ (30 °C)	5.2 V	LFP	21
PSSE	2.5 × 10 ⁻⁴ (25 °C)	4.63 V	LTO@VG/LF P	22
SPE-14-15	1.26 × 10 ⁻⁴ (30 °C)	4.9 V	LFP	23

Table S1. Performance parameter and the application in the lithium battery of solid polymer electrolytes with SCN additives. (In some studies, succinonitrile is abbreviated

Solid electrolytes	Ionic conductivity (S cm ⁻¹)	Electrochemical windows	Battery configuration	Refs.
LFSPE	6.78 × 10 ⁻⁴ (25 °C)	4.713 V	LCO/LFP/ NCM811	This work
(PEG-HDIt)/LiTFSI	6.51 × 10 ⁻⁵ (25 °C)	4.65 V	LFP/ LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂	24
PCL/LiTFSI	2.5 × 10 ⁻⁵ (25 °C)	4.6 V	LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂	25
P(STFSILi)-PEO- P(STFSILi)	1.3 × 10 ⁻⁵ (60 °C)	5 V	LFP	26
PEO/LiTFSI	1.9 × 10 ⁻⁶ (25 °C)	-	-	27
PIL-PEO/LiTFSI	6.12 × 10 ⁻⁴ (55 °C)	5.44 V	LFP	28
PEO/LiTFSI-SNps	4.35 × 10 ⁻⁴ (30 °C)	5.18 V	LFP/LCO	29
SPEs with nanowires	6.05 × 10 ⁻⁵ (30 °C)	-	-	30
PEO-ta-POSS	1.2 × 10 ⁻³ (90 °C)	3.8 V	V ₂ O ₅	31
PDADMA NTf ₂ /LiFSI/PVDF	2.64 × 10 ⁻⁴ (25 °C)	4.5 V	LiNiMnCoO ₂ / LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂	32
PI/PEO/LiTFSI	2.3 × 10 ⁻⁴ (30 °C)	-	LFP	33
PEO-5% g-C ₃ N ₄ - LiTFSI	1.52 × 10 ⁻⁴ (60 °C)	4.7 V	LFP	34
PEO/LiTFSI/10% VS	2.9 × 10 ⁻⁵ (25 °C)	5.35 V	LFP	35
PEO-n-UIO-LiTFSI	1.3 × 10 ⁻⁴ (30 °C)	4.5 V	LFP	36
PEO-LiTFSI-1% Li ₂ S	2.52 × 10 ⁻⁴ (50 °C)	-	NCM811	37
PEO-VAVS-LiTFSI	1.89 × 10 ⁻⁴ (50 °C)	-	LFP	38
(PMHS- PEO)/LiTFSI	10 ⁻⁵ (25 °C)	5.2 V	LFP	39
(PEO-sulfur- PEGMA)/LiTFSI	2.13 × 10 ⁻⁴ (50 °C)	5.4 V	LFP	40

Table S2. Performance parameter and the application in the lithium battery of solid

hybrid polymer electrolyte.

Fig. S4. Magnified areas of Li plating\stripping curves of the LFSPE symmetric cell at different current densities.

Fig. S5. SEM image and digital image of cycled PDDA-TFSI@Li electrode over 2000 h from LFSPE symmetric cell. The scratches on the surface are the result of artificial etching, indicating that even after the cyclic reaction, the coating can still effectively avoid the oxidation reaction of lithium metal exposed to the air. The white fibers on the surface prove that the electrolyte membrane in the battery is closely attached to the anode.

Fig. S6. The cycling performances of bare Li and PDDA-TFSI@Li symmetric cells with liquid electrolyte.

References

- C. Sun, Z. Wang, L. Yin, S. Xu, Z. A. Ghazi, Y. Shi, B. An, Z. Sun, H.-M. Cheng and F. Li, *Nano Energy*, 2020, **75**, 104976.
- Q. Lu, J. Fang, J. Yang, G. Yan, S. Liu and J. Wang, J. Membrane Sci., 2013, 425-426, 105-112.
- 3 K. Liu, Q. Zhang, B. P. Thapaliya, X. -G. Sun, F. Ding, X. Liu, J. Zhang and S. Dai, Solid State Ionics, 2020, 345, 115159.
- 4 B. Zhao, M. Yang, J. Li, S. Li, G. Zhang, S. Liu, Y. Cui and H. Liu, *Energy Technol.*, 2021, 9, 2100114.
- 5 S. Xu, Z. Sun, C. Sun, F. Li, K. Chen, Z. Zhang, G. Hou, H. -M. Cheng and F. Li, *Adv. Funct. Mater.*, 2020, **30**, 2007172.
- 6 Z. Yang, Y. Luo, X. Gao and R. Wang, ChemElectroChem., 2020, 7, 2599-2607.
- 7 H. Wang, C. Lin, X. Yan, A. Wu, S. Shen, G. Wei and J. Zhang, *Electroanal. Chem.*, 2020, 869, 114156.
- 8 J. Wang, J. Yang, L. Shen, Q. Guo, H. He and X. Yao, *ACS Appl. Energy Mater.*, 2021,
 4, 4129-4137.
- 9 C. Xu, Y. Jiang, K. Xu, Z. Chen, W. Chang, N. Cen, J. Ni, R. Xu, Y. Huang, P. Abulaiti, A. Tuohetimaiti, C. Lai and C. Peng, ACS Appl. Mater. Interface, 2022, 14, 2805-2816.
- Y. Liu, Y. Zhao, Wei Lu, L. Sun, L. Lin, M. Zheng, X. Sun and H. Xie, *Nano Energy*, 2021, 88, 106205.
- H. Wu, B. Tang, X. Du, J. Zhang, X. Yu, Y. Wang, J. Ma, Q. Zhou, J. Zhao, S. Dong,
 G. Xu, J. Zhang, H. Xu, G. Cui and L. Chen, *Adv. Sci.*, 2020, 7, 2003370.
- J. Choi, O. Zabihi, R. J. Varley, B. Fox and M. Naebe, *Mater. Today Chem.*, 2022, 23, 100663.
- L. Gao, B. Tang, H. Jiang, Z. Xie, J. Wei and Z. Zhou, *Adv. Sustain. Syst.*, 2021, 2100389.

- 14 K. Wen, X. Tan, T. Chen, S. Chen and S. Zhang, *Energy Storage Mater.*, 2020, **32**, 55-64.
- 15 H. K. Tran, Y. -S. Wu, W. -C. Chien, S. Wu, R. Jose, S. J. Lue and C. -C. Yang, ACS Appl. Energy Mater., 2020, 3, 11024-11035.
- 16 Z. Cheng, H. Pan, C. Li, X. Mu, Y. Du, F. Zhang, X. Zhang, P. He and H. Zhou, J. Mater. Chem. A, 2020, 8, 25217-25225.
- 17 R. Onozuka, C. Piedrahita, Y. Yanagida, K. Adachi, Y. Tsukahara and T. Kyu, Solid State Ionics, 2020, 346, 115182.
- 18 H. Yue, J. Li, Q. Wang, C. Li, J. Zhang, Q. Li, X. Li, H. Zhang and S. Yang, ACS Sustainable Chem. Eng., 2018, 6, 268-274.
- 19 D. Zhang, L. Zhang, K. Yang, H. Wang, C. Yu, D. Xu, B. Xu and L. -M. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 36886-36896.
- 20 K. -H. Choi, S. -J. Cho, S. -H. Kim, Y. H. Kwon, J. Y. Kim and S. -Y. Lee, Adv. Funct. Mater., 2014, 24, 44-52.
- 21 X. Yu, J. Li and A. Manthiram, ACS Materials Lett., 2020, 2, 317-324.
- 22 N. Zhang, J. He, W. Han and Y. Wang, J. Mater. Sci., 2019, 54, 9603-9612.
- 23 S. Z. Zhang, X. L. Wang, X. H. Xia, Z. J. Yao, Y. J. Xu, D. H. Wang, D. Xie, J. B. Wu,
 C. D. Gu and J. P. Tu, *J. Power Sources*, 2019, 434, 226726.
- J. Peng, L. -N. Wu, J. -X. Lin, C. -G. Shi, J. -J. Fan, L. -B. Chen, P. Dai, L. Huang, J. T. Li and S. -G. Sun, J. Mater. Chem. A, 2019, 7, 19565-19572.
- Z. Lin, X. Guo, Y. Yang, M. Tang, Q. Wei and H. Yu, J. Energy Chem., 2021, 52, 6774.
- 26 Y. Seo, Y. -C. Jung, M. -S. Park and D. -W. Kim, J. Membr. Sci., 2020, 603, 117995.
- R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Linenafa, J. -P. Bonnet, T. N. T.
 Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel and M. Armand, *Nat. Mater.*, 2013, 12, 452-457.
- 28 S. J. Kwon, B. M. Jung, T. Kim, J. Byun, J. Lee, S. B. Lee and U. H. Choi,

Macromolecules, 2018, 51, 10194-10201.

- 29 J. Hu, W. Wang, X. Zhu, S. Liu, Y. Wang, Y. Xu, S. Zhou, X. He and Z. Xue, J. Membrane Sci., 2021, 618, 118697.
- 30 W. Liu, S. W. Lee, D. Lin, F. Shi, S. Wang, A. D. Sendek and Y. Cui, *Nat. Energy*, 2017, 2, 17035.
- 31 K. -H. Choi, S. -J. Cho, S. -H. Kim, Y. -H. Kwon, J. Y. Kim and S. -Y. Lee, Adv. Funct. Mater., 2014, 24, 44-52.
- 32 Y. Shi, Y. Chen, Y. Liang, J. Andrews, H. Dong, M. Yuan, W. Ding, S. Banerjee, H. Aedebili, M. L. Robertson, X. Cui and Y. Yao, J. Mater. Chem. A, 2019, 7, 19691-19695.
- 33 X. Wang, G. M. A. Giraed, H. Zhu, R. Yunis, D. R. MacFarlane, D. Mecerreyes, A. J. Bhattacharyya, P. C. Howlett and M. Forsyth, ACS Appl. Energy Mater., 2019, 2, 6237-6245.
- 34 J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen and J. Chen, *Nat. Nanotechnol.*, 2019, 14, 705-711.
- 35 Z. Sun, Y. Li, S. Zhang, L. Shi, H. Wu, H. Bu and S. Ding, J. Mater. Chem. A, 2019, 7, 11069-11076.
- 36 W. Tang, S. Tang, C. Zhang, Q. Ma, Q. Xiang, Y.W. Yang and J. Luo, Adv. Energy Mater., 2018, 8, 1800866.
- 37 J.-F. Wu and X. Guo, J. Mater. Chem. A, 2019, 7, 2653–2659.
- 38 O. Sheng, J. Zheng, Z. Ju, C. Jin, Y. Wang, M. Chen, J. Nai, T. Liu, W. Zhang and Y. Liu, *Adv. Mater.*, 2020, **32**, 2000223.
- W. Tang, S. Tang, X. Guan, X. Zhang, Q. Xiang and J. Luo, *Adv. Funct. Mater.*, 2019, 29, 1900648.
- 40 Y.-J. Li, C.-Y. Fan, J.-P. Zhang and X.-L. Wu, Dalton Trans., 2018, 47, 14932-14937.