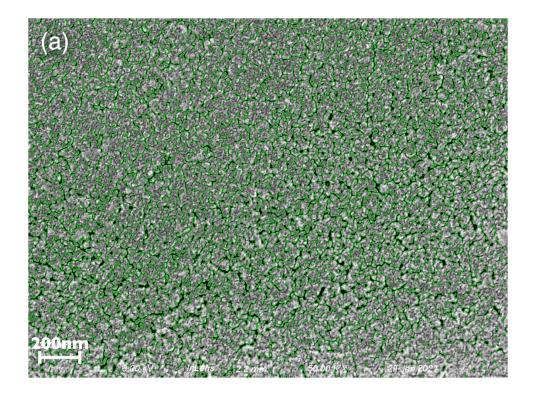
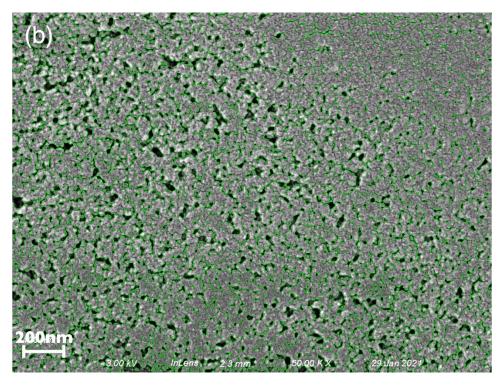
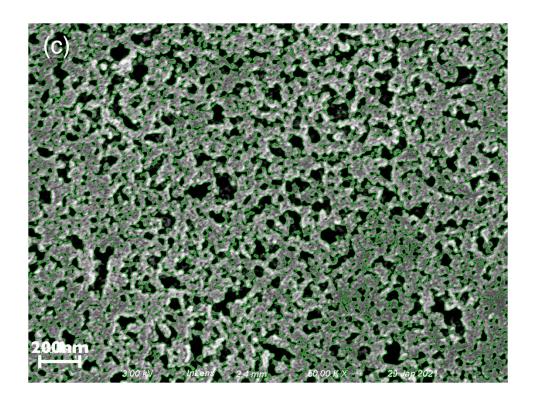
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

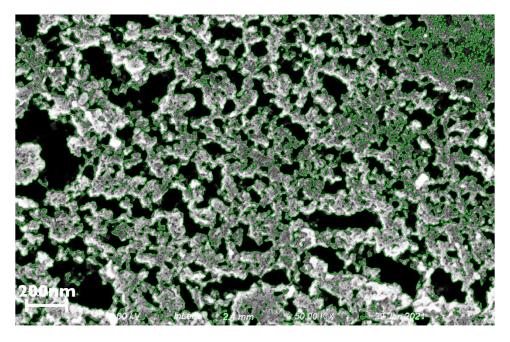
Supplementary Information


One-step Fabrication of Robust Lithium Ion Battery Separators by Polymerization-Induced Phase Separation


Alexander J. Manly^a and Wyatt E. Tenhaeff^{a,b,*}


^aMaterials Science Program, University of Rochester, Rochester, New York 14627, United States.

^bDepartment of Chemical Engineering and Materials Science Program, University of Rochester, Rochester, New York 14627, Unites States.


^{*}Corresponding author. (wyatt.tenhaeff@rochester.edu)

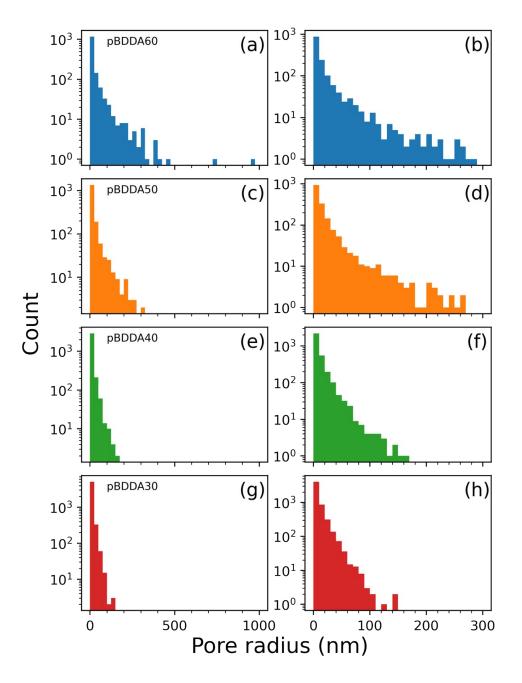
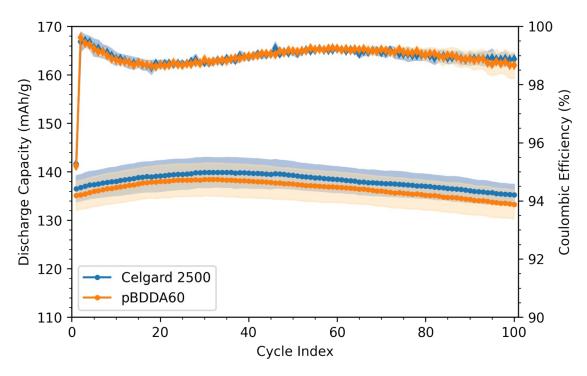


Fig. S1 SEM images with algorithmically-detected pore contours overlaid in green for (a) pBDDA30, (b) pBDDA40, (c) pBDDA50 and (d) pBDDA60.


Fig. S2 Histogram plots for pore size distribution derived from the SEM images of pBDDA samples. Individual plots for (a-b) pBDDA60, (c-d) pBDDA50, (e-f) pBDDA40 and (g-f) pBDDA30 are shown, The plots in the left show the entire range of pore sizes with a bucket width of 25nm. The plots in the right column show only up to 300nm in radius where most of the detected pores are plotted, to achieve a higher resolution – the bucket width is 10nm.

 $\textbf{Table S1} \ \mathsf{MacMullin} \ \mathsf{numbers} \ (\mathsf{N}_{\mathsf{M}}) \ \mathsf{of} \ \mathsf{commercial} \ \mathsf{separators} \ \mathsf{reported} \ \mathsf{in} \ \mathsf{the} \ \mathsf{literature}$

Separator	Material	N_{M}	Reference
Celgard C480	PP/PE/PP	7.3	63
Celgard H2013	PP/PE/PP	6.9	63
Celgard 2320	PP/PE/PP	10	63
Celgard 2325	PP/PE/PP	10	63
Celgard 2400	PP	13, 15.7, 23	64, 62, 55
Celgard 2500	PP	4.5, 8.5, 16, 23	63, 62, 64, 55
Celgard 2730	PE	11	64
Celgard 3500	PP	6.1	63
-	HDPE	14	63
-	HDPE	16	63
Solupor 14P01A	UHMWPE	22, 22.1	64, 62
Solupor 7P03A	UHMWPE	13, 4.3	64, 62
Solupor 10P05A	UHMWPE	5	64
Hipore N962C	UHMWPE	16.1	62
Hipore N720	UHMWPE	19.3	62
Hipore 6022	UHMWPE	13.4	62
Freudenberg FS-3001-30	PET [‡]	4.6	63

[‡]Non-woven separator

Separators were tested in 1.5M LiAsF $_6$ in THF 55 , 1M LiPF $_6$ in 1:1 EC:DMC 62,64 , and 1M LiPF $_6$ in 3:7 EC:DMC 63 .

Fig. S3 Average cycling performance of NMC532/Li metal half-cells with 1M 3:7 v/v/ EC:DMC, cycled at C/3 at 30°C. Five cells were tested and averaged for each material. Celgard 2500 separators were $25\mu m$, while pBDDA60 varied in thickness from $22-40\mu m$ with an average thickness of $30.2\mu m$.