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Fig. S1 *H NMR spectrum of DANQ (400 MHz, DMSO-dg). & (ppm) 5.46 (s, 4H,
-NH3), 7.59 (m, 2H), 7.76 (m, 2H).
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Fig. S2 *H NMR spectrum of TBPDO (400 MHz, CDCls). & (ppm) 7.86-7.89 (t,

2H), 7.94-7.98 (m, 4H), 8.55-8.57 (t, 2H), 8.68-8.70 (d, 2H), 9.54-9.56 (d, 2H).
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Fig. S3 FT-IR spectrum of TBPDO. FT-IR (cm™) 3347 (N-H), 3089/3068 (C-H, Ar),

2354(C=N), 1671(C=0), 1590(N-H), 1450(C=N) and 1279(C-N).
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Fig. S4 CVs of TBPDO electrode with acidified KB as the conductive additive ina 1

M KOH solution at 100 mV s during the 2™, 10", 30™, 50" and 100" cycles.

Determination of diffusion coefficient and charge transfer rate constant
Fig. S5 shows CVs of TBPDO electrode in 1 M KOH solution at different scan

rates. The applied scan rate ranges from 0.005 to 4 V s. When the scan rate is higher



than 0.4 V s, the peak currents for both ET1 and ET2 are linearly increased with the
increase of the square root of the scan rates (Fig. S6a-S6b), revealing the
characteristic of diffusion-controlled process at high scan rates for TBPDO electrode.
The chronoamperometry curves (Fig. S7a-S7b) were recorded and fitted to determine
the diffusion coefficients for ET1 and ET2 of TBPDO electrode using the following
semi-infinite linear diffusion Cottrell equation [S1]:

j =nFC, ()Y )
where D is the diffusion coefficient, j is the current density, t is time, n is the number
of transferred electrons, F is the Faraday constant and Cs is the concentration of redox
species within the TBPDO electrode layer.

The concentration (Cs) of redox species is calculated by the equation [S2] as

follow:

m

Cs = M,,A8 3)

where m is the mass of TBPDO (5.58 pg), My, is the molecular weight of TBPDO
(360 g mol™), A is the geometric area of electrode (0.071 cm?) and § is the average
thickness of TBPDO electrode layer that was obtained using a Dektak step profiler
(3.57 um, Table S1). Therefore, the Cs value was calculated to be 0.603 mol L™.

The Cottrell plots of both ET1 and ET2 reveal good linear dependence of j

Y2 According to the linear dependence of j versus t*2for the Cottrell plots

versus t’
(Fig. S7c-S7f), the D values of the oxidation and reduction progress for ET1 are

calculated to be 1.59x10™*2 and 3.07x107*2 cm? s while the D values of the oxidation



and reduction progress for ET2 are 6.67x10™*% and 7.28x10™ cm? s, respectively.
Therefore, the average D values for ET1 and ET2 are determined to be 2.33x10™*2 and
6.97x10™" cm? s, respectively.

The charge transfer rate constant (k%) is obtained by using Nicholson's method
[S3]. Firstly, the kinetic parameter ¥ was obtained from the potential gap between the

oxidation and reduction peak (AE,) using the following equation:

¥ = (—0.6288 + 0.0021AE,)/(—0.017AE, + 1) (4)

Then, k® was calculated according to the linear relationship between ¥ and v/ shown
in the equation (5).

1 - ko(%)—uzv—yz (5)

Therefore, the k° values were calculated to be 8.21x10™ cm s for ET1 and 1.59x107

cm s for ET2, respectively, from the slope of the ¥~v*? dependence (Fig. S8a-S8b).
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Fig. S5 CVs of TBPDO electrode in 1 M KOH solution at different scan rates (the

scan rates (v) from 0.005 to 4 V s2).
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Fig. S6 Plots of peak current density (j,) versus square root of scan rate (v%) for ET1

(@) and ET2 (b), respectively.

Table S1 Thickness data of the TBPDO electrode layer obtained from Dektak step

profiler (Bruker).

No. 1 2 3 4 Average value

Thickness (um) ~ 3.78 3.36 3.35 3.78 3.57
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Fig. S7 The chronoamperometry curve of TBPDO electrode in 1 M KOH solution for

(@) ET1 and (b) ET2. (c) Cottrell plot of ET1 for the oxidation reaction. (d) Cottrell

plot of ET1 for the reduction reaction. (e) Cottrell plot of ET2 for the oxidation

reaction. (f) Cottrell plot of ET2 for the reduction reaction. The results of the linear

regression are also shown.
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Fig. S8 (a) Plot of ¥ versus v**? for ET1 (The linear relationship was shown with scan
rates of 2.6~4.0 V s™%). (b) Plot of ¥ versus v for ET2 (The linear relationship was

shown with scan rates of 2.2~3.8 VV s™%).
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Fig. S9 (a) CV curve of 1 mM anthrafravic acid + 1 mM lawsone in 1 M KOH at 25
mV s™. (b) RDE voltammetry curves of 1 mM anthrafravic acid + 1 mM lawsone in 1
M KOH at eight rotation rates ranging from 200 to 2000 rpm. (c, ) Koutecky-Levich
plots derived from these RDE data at different oxidation overpotentials. (d, f) Fitted
curves of Butler-Volmer equation using the kinetic current density (jx) obtained from

the zero-intercept of Koutecky-Levich plots in (c, ) at five oxidation overpotentials.



! ;
fe

.0 S

g i [
—— |
1

Single flow cell
(A) Membrane (B) Carbon paper (C) Gasket
(D) Flow-field plate (E) Current collector (F) End plate

Fig. S10 Digital photos of the container and granules. (a) The container of the
solid-state energy storage material. (b) granules of TBPDO. (c) the flow cell with an

active area of 5 cm?. (d) the exploded view of the flow cell.
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Fig. S11 The contact angle of water on the compacted TBPDO powder surface.
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Fig. S12 \oltage profiles of the RTFB cell with 26.8 and 53.6 mAh TBPDO,
respectively, at 5 mA cm™. 5 mL 50 mM anthrafravic acid + 50 mM lawsone in 1 M
KOH was utilized as an anolyte. 10 mL 300 mM K,4[Fe(CN)g] + 75 mM K3[Fe(CN)g]
in 1 M KOH was used as a catholyte for the cell with 26.8 mAh TBPDO while 20 mL
300 MM K4[Fe(CN)g] + 75 mM K3[Fe(CN)g] in 1 M KOH was used as a catholyte

for the cell with 53.6 mAh TBPDO.
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Fig. S13 Representative charge-discharge profiles of 5 mL 50 mM anthrafravic acid +

50 mM lawsone//ferrocyanide flow cell after adding 26.8 mAh (90 mg) TBPDO at 5

mA cm™.
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Fig. S14 Capacity retention and efficiencies of the RTFB cell after adding 53.6 mAh
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Fig. S15 'H NMR spectra of pristine and chemically reduced TBPDO by NaBH, in

CDCls.
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Table S2 Comparison of performances of anodic energy-storage materials for aqueous RTFBs. ESM, energy-storage material; ML, mass

loading of ESM; Cieo, theoretical capacity of ESM; MUR, material utilization rate; SC, specific capacity based on the volume of the anolyte;

CE, current efficiency; EE, energy efficiency; CRPC, capacity retention per cycle; TCFR, temporal capacity fade rate. PANI, polyaniline; CB,

carbon black. NA, not applicable.

ESM ML (mg) Ciheo MUR SC (AhL™) CE EE CRPC TCFR
(mAh g™)
PANI/CB B4 7400 144 44.1% at 15.4 35.8 at 15.4 mA NA NA ~98.8% per cycle ~2% per day
mA cm™ cm? (10 cycles)
Polyimide/CB B 360 (54 mAh) 150 83%at10mA  ~22at30mAcm?  ~98%at 30 NA ~99.9% per cycle ~1% per day
&780 (117 mAh) cm? & 61% at mA cm (~60 cycles)
30 mA cm
LiTi,(PO4)s/C & ~670 138 14%at25mA  ~6.9atat2.5 mA ~98%at5  ~70%at5 99.98% (~55 NA
cm? cm” mA cm* mA cm* cycles)*
TBPDO (this 90 (26.8 mAh) & 298 80.2% at2mA 83at2mAcm?& ~95% at 5 ~81%at5 99.82% percycle  1.44% per
work) 180 (53.6 mAh) cm 10.3 at 5 mA cm™ mA cm™ mA cm (21 cycles) day

14



* The anode is not the capacity limiting side.
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