Ca-ion Modified Vanadium Oxide Nanoribbons with Enhanced Zn-ion Storage Capability

Dezhou Zheng,^{a†} Xiaokang Pei,^{a†} Hai Lin,^a Hongwei Tang,^a Yin Song,^a Qi Feng,^a Guangxia Wang,^a Wei Xu,^a Fuxin Wang,^{*a} and Xihong Lu^{*ab}

^aSchool of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR
China. E-mail: wangfux91@126.com; luxh6@mail.sysu.edu.cn
^b The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province,
MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China

Figure S1. The EDS mapping of the VO sample.

Figure S2. (a, c) TEM and HRTEM images of VO. (b) SAED image.

Figure S3 V $2p_{3/2}$ spectra of the synthesized VO and CVO samples.

Figure S4. O 1s spectra of the VO and CVO sample.

Figure S5 CV and GCD curves of all batteries at a scan rate of 0.1 mV s⁻¹ and current density of 2 A g^{-1} .

Figure S6. The first CV curve of VO and CVO samples at a scan rate of 0.1 mV s⁻¹.

Figure S7. Capacity retention of VO and CVO.

Figure S8. Capacitive contribution (inset) and diffusion contribution of CVO and VO electrode at 0.1 mV s⁻¹.

Figure S9 (a) The GCD profile of CVO at 2 A g⁻¹. (b) Ex-situ XRD patterns of CVO

Figure S10 The GCD profile of CVO at 2 A g⁻¹, the insets show the SEM for different state during the charging and discharging process.