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1 Calculation method

1.1 DFT and HSE06 Calculations
The main calculations were carried out based on the Density Functional Theory (DFT) as implemented in the Vienna
Ab Initio Simulation Package (VASP).1,2 The electron-ion potential is described by the projector augmented wave (PAW)
method.3 The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) are used to approxi-
mate the electron exchange and correlation potentials.4 A 11 × 11 × 5 Monkhorst-Pack k-point mesh5 is employed to
sample the Brillouin zone for self-consistent calculation. The kinetic energy cutoff is set to 520 eV during all calcula-
tions. The convergence tolerances of the energy and force are smaller than 0.01 eV/Å and 10−5 eV. Considering that the
normal DFT-PBE calculations usually underestimate the band gap of semiconductors seriously, we revise the band gap of
Ba2X2[Csn−1SnnX3n+1] (X=I, Br, Cl) by using the HSE06 method method (a mixture of 0.25 Hartree-Fork exchange and
0.75 PBE exchange functional)6.

1.2 Effective Hamiltonians Built by the k · p Method
The Hamiltonians near the band edge are given here by the k · p method, in which the wave function at k is expressed as
φnk = eik·run(r) with un(r) derived from the basis function of |S⟩, |X⟩, |Y⟩ and |Z⟩ at the S point. The Hamiltonian matrix
elements of the k · p model can be written as Hnm = [En0 +

h̄2k2

2m0
]δnm + h̄

m k · p, where En0 is the energy eigenvalue of nth state
at S point, p =−ih̄▽ is the momentum operator.

The Hamiltonian without the SOC effect in the neighborhood of S (0.5, 0.5, 0) obtained by the k · p method is as
follows,

H =
h̄2(k2 − k2

0)

2m
+


Evbm,0 Pxkx Pyky Pzkz
Pxkx Ecbm,0 +L1k2

x +M1k2
z +N1k2

y Kxykxky Kxzkxkz
Pyky Kxykxky Ecbm+1,0 +L1k2

y +M1k2
z +N1k2

x Kyzkykz
Pzkz Kxzkxkz Kyzkykz Ecbm+2,0 +L2k2

z +M2(k2
x + k2

y )

, (S1)

where Evbm,0 is energy of VBM, Ecbm,0, Ecbm+1,0 and Ecbm+2,0 are the energies of |X⟩, |Y⟩ and |Z⟩ at S (0.5, 0.5, 0) point,
Kxy, Kyz, Kxz, Li, Mi and Ni are parameters due to the interaction between the conduction bands with far bands other than
the valence band, Px, Py and Pz are parameters of the k · p Hamiltonian.7
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The matrix of the SOC effect, HSOC is the following expression:

HSOC =
λ

2


0 −i 0 0 0 1
i 0 0 0 0 −i
0 0 0 −1 i 0
0 0 −1 0 i 0
0 0 −i −i 0 0
1 i 0 0 0 0

 . (S2)

The Hamiltonian including the SOC effect at S (0.5, 0.5, 0) is the following expression:

H f ull =



E∗
vbm 0 0 0 0 0 0 0
0 E∗

cbm −λ/2i 0 0 0 0 λ/2
0 λ/2i E∗

cbm+1 0 0 0 0 −λ/2i
0 0 0 E∗

cbm+2 0 −λ/2 λ/2i 0
0 0 0 0 Evbm 0 0 0
0 0 0 −λ/2 0 E∗

cbm λ/2i 0
0 0 0 −λ/2i 0 −λ/2i E∗

cbm+1 0
0 λ/2 λ/2i 0 0 0 0 E∗

cbm+2


, (S3)

where E∗
vbm=Evbm,0, E∗

cbm=Ecbm,0 +L1k2
x +M1k2

z +N1k2
y , E∗

cbm+1=Ecbm+1,0 +L1k2
y +M1k2

z +N1k2
x and E∗

cbm+2=Ecbm+2,0 +L2k2
z +

M2(k2
x + k2

y).
The Hamiltonian including the SOC effect along the path S (0.5, 0.5, 0) → Γ (0, 0, 0) is the following expression:

H f ull =
h̄2(k2 − k2

0)

2m
+



E∗
vbm Pxkx 0 0 0 0 0 0

Pxkx E∗
cbm −λ/2i 0 0 0 0 λ/2

0 λ/2i E∗
cbm+1 0 0 0 0 −λ/2i

0 0 0 E∗
cbm+2 0 −λ/2 λ/2i 0

0 0 0 0 Evbm Pxkx 0 0
0 0 0 −λ/2 Pxkx E∗

cbm λ/2i 0
0 0 0 −λ/2i 0 −λ/2i E∗

cbm+1 0
0 λ/2 λ/2i 0 0 0 0 E∗

cbm+2


. (S4)

1.3 Carrier Mobility
The carrier mobility µ can demonstrate the electronic transport properties more intuitively, therefore, we used the Feyn-
man equation8,9 to describe µ, which will be much more accurate than the deformation-potential theory because optical
phonons are taken into account.10 In room temperature, the µ can be described by the following expression,11

µ =
3
√

πe
2πcωLOm∗α

sinh(β/2)
β 3/2

w3

v3
1
K
, (S5)

where ωLO is the longitudinal optical phonon frequency, which can be calculated by the VASP code, β = hcωLO/kBT , v and
w are variational parameters depending on temperature T , meanwhile, K is a function of v and w.11 In this work, we obtain
v and w by minimizing the free polaron energy.11 The parameter α is electron-phonon coupling constant, introduced by
Fröhlich in order to describe the movement of electrons in a polar crystal.12 The specific expression of α is,11

α =
1
ε∗

√
Ry

chωLO

√
m∗

me
, (S6)

where Ry and me are the Rydberg constant and mass of electron, respectively. The ionic screening parameter, 1
ε∗ =

1
ε∞

− 1
εstatic

can be calculated by the VASP code.

1.4 Interband Optical Absorption
To obtain the optical absorption coefficient, we first calculate the frequency-dependent dielectric function. The imaginary
part of the dielectric function can be described as follows,13

ε
(2)
αβ

(ω) =
4π2e2

Ω
lim
q→0

1
q2 ∑

c,v,k
2ωkδ (εck − εvk −ω)×

〈
uck+eα q|uvk

〉〈
uck+eβ q|uvk

〉∗
, (S7)
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where Ω denotes the volume of the supercell, q represents the wavenumber of the incident electromagnetic wave, eα is
the unit vector in the α direction, and c and v label the conduction and valence bands, respectively. We can derive the real
part of the dielectric function according to Kramers-Kronig transformation,14

ε
(1)
αβ

(ω) = 1+
2
π

P
∫

∞

0

ε
(2)
αβ

(ω ′)ω ′

ω ′2 −ω2 + iη
dω

′, (S8)

where P represents the principle value. The absorption coefficient α(ω) can thus be calculated by the following expres-
sion,15

α(ω) =
√

2ω[

√
ε(1)(ω)2 + ε(2)(ω)2 − ε

(1)(ω)]1/2. (S9)

1.5 Spectroscopic Limited Maximum Efficiency (SLME)
The theoretical maximum solar cell efficiency is defined as

η =
Pm

Pin
, (S10)

where Pin represents the total incident power density from the solar spectrum and Pm denotes the maximum value of the
output power density P. Shockley and Queisser (SQ) proposed a classic and universal efficiency estimation for solar cells,
which only depends on the electronic band gap of the materials.5 To improve the simplified SQ approximation, Yu and
Zunger theoretically established the SLME method,16,17 in which the power density P can be obtained from the product
of the current density J and voltage V ,

P = JV = [Jsc − J0(exp(eV/kBT )−1]V, (S11)

where T represents the temperature, Jsc denotes the short circuit current density, and J0 is the reverse saturation current
density, respectively. Both Jsc and J0 can be calculated from the photon absorptivity a(E) of the absorbers, the AM1.5G
solar spectrum Isum, and the blackbody spectrum Ibb(E,T ) as follows,

Jsc = e
∫

∞

0
a(E)Isum(E)dE, (S12)

J0 =
Jr

0
fr

=
eπ

fr

∫
∞

0
a(E)Ibb(E,T )dE, (S13)

where fr is the fraction of the radiative recombination current and Jr
0 denotes the radiative recombination current density.

1.6 PSC Device Model
To investigate the J-V characteristic and PCE in the PSC device, we adopt the wxAMPS code.18,19 This code uses New-
ton and Gummel methods to solve the transport equations, which start from the Poisson’s equation and the continuity
equations for the electrons and holes,

d
dx

(−ε(x)
dΨ

dx
) = ρ, (S14)

1
q

dJn

dx
=−Gop(x)+R(x), (S15)

1
q

dJp

dx
=−Gop(x)−R(x), (S16)

where ρ denotes total space charge density, Ψ labels the electrostatic potential, ε represents the permittivity, and q is the
electron charge. The generation/recombination rate G/R, and the densities of electron/hole current Jn/Jp are functions of
the position coordinate x. The charge density ρ is given by,

ρ = q[p(x)−n(x)+N+
D (x)−N−

A (x)+ pt(x)−nt(x)], (S17)

where n/p,nt/pt and N+
D /N−

A are free electron/hole density, trapped electron/hole density, and the ionized donor/acceptor-
like doping concentration as a function of position x in the device.
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2 Crystal structure and stability of Ba2X2[Csn−1SnnX3n+1] (X=I, Br,
Cl; n=1, 2, 3)

Table S1 Calculated lattice parameters a, c (see the labels in Figure 1a) and distortion angle θ for
Ba2X2[Csn−1SnnX3n+1] (X=I, Br, Cl; n=1, 2, 3), compared with RP perovskite Cs2[Csn−1SnnX3n+1]. Due to the
imperfect match between perovskite layer and [Ba2X2] layer, the lattice parameter a of AV perovskites is slightly
different from RP perovskites. For I-based perovskites, aAV (6.070 Å) is smaller than aRP (6.157 Å), indicating that
the [Ba2I2] layer provides a compressive stress to the perovskite layer. On the contrary, aAV of Cl-based AV perovskite
(5.606 Å) is larger than aRP (5.553 Å), indicating that [Ba2Cl2] layer provides a tensile stress for the perovskite layer.
But for Br-based perovskites, the lattice parameter a of RP and AV perovskites are 5.804 and 5.838 Å, indicating
that the perovskite layer matches the [Ba2Br2] layer well.

Material n a (Å) c (Å) θ

1 6.070 22.991 180◦

Ba2I2[Csn−1SnnI3n+1] 2 6.194 34.789 176.01◦

3 6.228 47.283 176.29◦

1 5.838 20.083 180◦

Ba2Br2[Csn−1SnnBr3n+1] 2 5.822 32.131 175.39◦

3 5.837 44.085 176.08◦

1 5.606 18.686 180◦

Ba2Cl2[Csn−1SnnCl3n+1] 2 5.528 30.833 172.88◦

3 5.557 42.298 174.80◦

Cs2[Csn−1SnnI3n+1] 1 6.157 19.595 180◦

Cs2[Csn−1SnnBr3n+1] 1 5.804 18.478 180◦

Cs2[Csn−1SnnCl3n+1] 1 5.553 17.634 180◦

Figure S1 Calculated XRD pattern of bulk (a) Ba2I2[SnI4], (b) Ba2I2[CsSn2I7] and (c) Ba2I2[Cs2Sn3I10]. The radiation
wavelength is chosen as 1.5418 Å (Cu Kα), and several important crystal faces are marked with corresponding Miller
indices (hkl), where several crystal planes with l ≥10 naturally become four-digit indices. All XRD patterns are
calculated by using VESTA.20
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Figure S2 Calculated XRD pattern of bulk (a) Ba2Br2[SnBr4], (b) Ba2Br2[CsSn2Br7] and (c) Ba2Br2[Cs2Sn3Br10].
The radiation wavelength is chosen as 1.5418 Å (Cu Kα), and several important crystal faces are marked with
corresponding Miller indices (hkl), where several crystal planes with l ≥10 naturally become four-digit indices. All
XRD patterns are calculated by using VESTA.20

Figure S3 Calculated XRD pattern of bulk (a) Ba2Cl2[SnCl4], (b) Ba2Cl2[CsSn2Cl7] and (c) Ba2Cl2[Cs2Sn3Cl10].
The radiation wavelength is chosen as 1.5418 Å (Cu Kα), and several important crystal faces are marked with
corresponding Miller indices (hkl), where several crystal planes with l ≥10 naturally become four-digit indices. All
XRD patterns are calculated by using VESTA.20

Figure S4 (a) The new tolerance factor τ for Ba2X2[Csn−1SnnX3n+1] (X=I, Br, Cl) perovskites. τ is calculated using
the expression: τ = rX

rB
− nA(nA − rA/rB

ln(rA/rB)
).21 τ < 4.18 indicates that the crystal is perovskite with a high overall

accuracy of 92%, and there are a few perovskites existing with τ in the range of 4.18∼4.30 as well.21 (b) The
calculated formation energy for Ba2X2[Csn−1SnnX3n+1] (X=I, Br, Cl; n=1, 2, 3), MAPbX3 (X=I, Br, Cl), and several
typical 2D semiconductors.
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Figure S5 (a) Surface energy for three possible surface morphologies for Ba2Br2[SnBr4]. (b) Surface energy for four
possible surface morphologies for Ba2I2[CsSn2I7]. We did not choose to calculate the decomposition enthalpy in the
oxidation reaction because the Sn2+ in Sn-based perovskites are easily oxidized, and the result of the decomposition
enthalpy is often disappointing. On the contrary, the passivation and other techniques can be used to separate the
material from oxygen and successfully prevent the oxidation reaction.22 This process cannot be described by the
decomposition enthalpy. In this work, we demonstrate that the [Ba2X2] layer insulates oxygen, in which the surface
energy is more effective than the decomposition enthalpy. Therefore, we focus on the isolation of oxygen by the
[Ba2X2] layer, not the oxidation reaction.

Table S2 Elastic constants (GPa) of the AV-phase Ba2X2[Csn−1SnnX3n+1] perovskites (X= I, Br, Cl; n=1, 2, 3). The
matrix of second-order elastic constants C44 decreases with increasing of the octahedral layer number n. Therefore,
the accumulation of octahedral layers along the z axis unfortunately reduces the stability of Ba2X2[Csn−1SnnX3n+1],
and potential distortion or slip may occur accordingly. For Ba2Cl2[Csn−1SnnCl3n+1] perovskites, the structure will
become mechanically unstable when n≥3.

Material C11 C12 C33 C13 C44 C66

Ba2I2[SnI4] 37.52 -0.74 14.38 10.32 4.40 1.27 stable

Ba2Br2[SnBr4] 40.55 -4.45 19.98 15.31 3.70 0.46 stable

Ba2Cl2[SnCl4] 49.61 -2.40 27.74 15.46 3.98 0.92 stable

Ba2I2[CsSn2I7] 31.72 4.37 19.68 10.47 2.35 2.36 stable

Ba2Br2[CsSn2Br7] 42.53 2.42 23.70 14.88 0.39 2.58 stable

Ba2Cl2[CsSn2Cl7] 40.55 -4.44 19.97 15.30 3.69 0.45 stable

Ba2I2[Cs2Sn3I10] 31.44 5.17 21.16 8.65 2.02 2.96 stable

Ba2Br2[Cs2Sn3Br10] 42.51 4.09 22.62 11.96 0.17 3.41 stable

Ba2Cl2[Cs2Sn3Cl10] 48.52 5.28 21.17 13.23 -3.65 4.31 unstable
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3 Accurate band structures and band gaps of Ba2X2[Csn−1SnnX3n+1]

Figure S6 The calculated electronic band structures of Ba2X2[Csn−1SnnX3n+1] (X= I, Br, Cl; n=1, 2, 3) in which
the SOC effect is included.
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Figure S7 (a) The changes of band gaps for Ba2Cl2[Csn−1SnnCl3n+1] (n=1, 2). (b) The quantum confinement effect,
which will be weakened with the thickening perovskite-like sheet.

4 The SOC effect analysis by the k · p method

Table S3 The parameters of the effective Hamiltonian

Px Py Kxy L1 N1 M2 λ

41.86 46.99 444.89 -244.41 683.36 176.48 0.24

The conduction band shift can be quantificationally described by the energy eigenvalues of three conduction band
states at S point. To simplify the expressions, we approximate energy levels of |X⟩ and |Y⟩ equal, which in fact are only
0.03 eV apart. For three conduction bands, the energy eigenvalues are given as,

Ecbm = a
3 −

√
b

6 cos(arctan(
√

4b3−c2

c )+π),

Ecbm+1 =
a
3 −

√
b

6 cos(arctan(
√

4b3−c2

c )−π),

Ecbm+2 =
a
3 +

√
b

6 cos(arctan(
√

4b3−c2

c )),

(S18)

where, 
a = Ecbm,0 +Ecbm+1,0 +Ecbm+2,0,

b = 8((δ01)
2 +(δ12)

2 +(δ20)
2)+36λ 2,

c = 64
3 ((δ01 −δ12)

3 +(δ12 −δ20)
3 +(δ20 −δ12)

3)+432λ 3.

(S19)

In these expressions, Ecbm,0, Ecbm+1,0, Ecbm+2,0 are the energy eigenvalues of |X⟩, |Y⟩, |Z⟩ at S point ( Ecbm,0 ≈ Ecbm+1,0
< Ecbm+2,0) without the SOC effect, λ is the SOC strength, δ01 = Ecbm,0 −Ecbm+1,0, δ12 = Ecbm+1,0 −Ecbm+2,0 and δ20 =
Ecbm+2,0 −Ecbm,0.

In order to analyze the influence of the SOC effect on band dispersion, we next give the expression of Ecbm in the
neighborhood of CBM. We only discuss the case along S−Γ path, in which Ecbm only depends on kx. Ecbm can be expressed
as a Taylor series expansion of kx,

Ecbm =
a
3
−

√
b

6
cos(arctan(

√
4b3 − c2 −π

c
))+

p2
xk2

x

2
(F(λ ,Eg))+O(k4

x), (S20)

where the band gap Eg = Ecbm −Evbm and F(λ ,Eg) is a complex function of λ and Eg. As we ignore the higher order of
kx (O(k4

x)), Ecbm is thus parabolic function of kx near the band edge, in which the dispersion is positively related to the
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quadratic coefficient. Because λ is relative small (∼0.24 eV) compared with Eg, we could take the first order approximation
to the quadratic coefficient as follows,

a2 =
p2

xk2
x

2Eg
(1+

λ

2Eg
), (S21)

which shows that the SOC effect increases the quadratic coefficient and makes CBM much more dispersive.

5 Optical absorption, SLME, J-V curve and the parameters of wx-
AMPS simulation

Table S4 Calculated values of the reduced effective mass µ∗, high-frequency dielectric constant ε∞ and exciton binding
energy Eb for Ba2X2[Csn−1SnnX3n+1] (X=I, Br, Cl; n=1, 2, 3). The exciton binding energy is calculated using the
expression Eb = µ∗/ε2

∞ ×ERy eV.23

Material µ∗ (m0) ε∞ Eb (meV)

Ba2I2[SnI4] 0.04 6.7 11

Ba2Br2[SnBr4] 0.07 5.3 34

Ba2Cl2[SnCl4] 0.10 4.5 65

Ba2I2[CsSn2I7] 0.06 7.0 16

Ba2Br2[CsSn2Br7] 0.08 5.4 36

Ba2Cl2[CsSn2Cl7] 0.15 4.3 113

Ba2I2[Cs2Sn3I10] 0.05 6.9 13

Ba2Br2[Cs2Sn3Br10] 0.07 5.3 32

Ba2Cl2[Cs2Sn3Cl10] 0.10 4.2 75

MAPbI3
23 0.06 5.8 44
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Figure S8 (a) Interband optical absorption spectra of Ba2I2[Csn−1SnnI3n+1] (red lines) and Ba2Cl2[Csn−1SnnCl3n+1],
along with Air Mass (AM) 1.5G Spectra.24 (b) Estimated SLME of Ba2X2[Csn−1SnnX3n+1] (X=Cl and I). Calculated
J-V characteristic of (c) Ba2Br2[SnBr4] and (d) Ba2Br2[CsSn2Br7] at a thickness of 1 µm.

Table S5 The input parameters of wxAMPS simulation for Ba2Br2[Cs2Sn3Br10] PSC. The parameters of SnO2 and
CuSbS2 are taken from ref.25–27

Parameters SnO2 Ba2Br2[Cs2Sn3Br10] CuSbS2

Thickness (µm) 0.05 0.50 0.05

Permittiviy 9 35 8.2

Band gap (eV) 3.6 1.26 1.58

Affinity (eV) 4.6 4.6 4.2

Nc (cm−3) 2.2×1018 1.33×1018 2×1018

Nv (cm−3) 1.8×1019 1.06×1018 1×1019

µe (cm2/(v·s)) 100 135 49

µh (cm2/(v·s)) 0.256 173 49

Nd (cm−3) 1×1017 0 0

Na (cm−3) 0 2.1×1017 1.38×1018
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