Engineering the Surface Anatomy of an Industrially Durable NiCo₂S₄/NiMo₂S₄/NiO Bifunctional electrode for Alkaline Seawater Electrolysis

Selvaraj Seenivasan, and Do-Heyoung Kim*

School of Chemical Engineering, Chonnam National University, 300 Youngbong-dong, Gwangju 500-757, Republic of Korea

SUPPORTING INFORMATION

*Corresponding author: kdhh@chonnam.ac.kr Tel. (office): +82-62-530-1894

Fig. S1. XPS survey spectra of bare (NiCo₂O₄/NiMoO₄) NCMO, (NiCo₂S₄/NiMo₂S₄) NCMS, (NiCo₂S₄/NiMo₂S₄/NiO) NCMS/NiO (before and after overall water splitting for 14 days) electrocatalysts.

Fig. S2. High resolution Co 2p spectra of $NiCo_2O_4$ sample. There are two main peaks in Co $2p_{3/2}$ at 783.69 and 781.27 eV, which can be assigned to the 3+ and 2+ states of $NiCo_2O_4$, respectively.

Fig. S3. HR-SEM images of $NiCo_2O_4$ (a-c), $NiCo_2O_4/NiMoO_4$ (d-f) and $NiCo_2S_4/NiMo_2S_4$ derived with three different anion exchange reaction duration (g-i)

Fig. S4. (a-c) OER half-cell forward sweep LSV curves with and without iR compensation.

Fig. S5. CV measurements at scan rate of 5, 10, 20, 30, 40 and 50 mV/s in 1 M KOH. a) NCMO, b) NCMS, and NCMS/NiO with various number NiO ALD cycles c) 20, d) 40, e) 80, f) 200 and g) 400. h) Estimation of double-layer capacitance (C_{dl}) by plotting the variation in current density ($\Delta I = (I_a - I_c)/2$) versus the scan rate. CV measurements at scan rate of 5, 10, 20, 30, 40 and 50 mV/s in 1 M KOH. i) used NCMS/NiO OER electrode and j) used NCMS/NiO HER electrode.

Fig. S6. a) Reduction peak (from CV curves) of NCMS/NiO at 100 mV/s scan rate with various number of NiO ALD cycles (20, 80, 200 and 400), and b) corresponding reverse sweep LSV curves (iR compensated).

Fig. S7. a) LSV (iR compensated) curves in HER half-cell with respect to number of ALD cycles,b) corresponding overpotential required for -100 mA/cm².

Fig. S8. HER half-cell LSV curves with and without iR compensation (a-c) and the overpotential comparison of all three catalysts at -100 mA/cm² current density in 1 M KOH electrolyte.

Fig. S9. Electronic circuit used to fit the impedance data.

Fig. S10. Comparison of high-resolution XPS profile for a) Ni $2p_{3/2}$, b) Co $2p_{3/2}$, and c) Mo 3d of NCMS/NiO before and after 7 consecutive LSV curves (anodic sweep from 1.0 V_{RHE} to 1.8 V_{RHE}, 5 mV s⁻¹).

Fig. S11. a) LSV curves of NCMO, NCMS, and NCMS/NiO electrocatalysts in two electrode cell, for overall water splitting in 1 M KOH electrolyte. b) Comparison of overpotential required

(additional to the thermodynamic requirement of 1.23 V) to deliver 50 and 100 mA/cm² current densities with iR compensation.

Fig. S12. Chronopotentiometry of NCMS/NiO catalysts in the overall water splitting (1 M KOH + DI water) for 14 days (1-7 days at 10 mA/cm² and 8-14 days at 100 mA/cm²).

Fig. S13. The HR-SEM images of NCMS/NiO electrocatalyst after overall water splitting for 14 days (first week at 10 mA/cm² and second week at 100 mA/cm²): a-c) OER electrode and d-f) HER electrode.

Fig. S14. Comparison LSV curves (iR uncompensated) of NCMS/NiO catalysts before and after the CA test: a) OER half-cell, b) HER half-cell.

Fig. S15. Digital photographs of a) raw sea water after simple filtration to remove debris and fine sand particles, b) 1 M KOH in sea water, and c) insoluble $Mg(OH)_2/Ca(OH)_2$ and $CaCO_3$ particles settled at the bottom of the beaker after an hour. d) Digital image of industrial seawater electrolyzer cell at 80 °C.

Fig. S16. a) LSV of NCMS/NiO || NCMS/NiO overall water splitting cell in raw sea water electrolyzer (pH ~ 8.1). Orange and blue curve indicated the current density measured at the anode and cathode, respectively. b) Cell configuration used to obtain the orange and blue LSV curves. WE is working, SE is working sense, CE is counter and RE is reference electrode connecting terminals of the potentiostat. c) Digital image of electrolyzer after 10 min of continuous electrolysis at 50 mA/cm² current density. The formation of insoluble particles over electrodes can be seen. After 60 min (d) the anode severely covered by the insoluble particles.

Fig. S17. Linear sweep voltammetry of NCMS/NiO || NCMS/NiO overall water splitting cell in industrial sea water electrolyzer with iR compensation.

Fig. S18. a) Comparison of total overpotentials achieved by NCMS/NiO||NCMS/NiO electrolyzer under reverse polarization. b) Chronopotentiometric response recorded by using reversely polarized NCMS/NiO electrodes at -100 mA/cm² for 4 h.

Fig. S19. The HR-SEM images (a-c) of HER electrode after industrial water splitting for 30 days and corresponding elemental analysis (d).

Fig. S20. a-c) The HR-SEM images of OER electrode after overall seawater splitting at 10 mA/cm^2 current density and 25 °C.

Fig. S21. LSV curves (without iR compensation) of the areas mentioned in Fig. 10(a) in the manuscript for the OER half-cell (1 M KOH + DI water, at 25 $^{\circ}$ C).

Electrocatalyst	Ni	Co	Mo	0	S
NCO	10.6	21.8	-	67.6	-
NCMO	13.8	0.0	13.8	70.5	-
NCMS	23.0	2.8	1.0	65.6	7.6
NCMS/NiO	23.7	0.9	0.8	67.7	7.0

 Table S1. Atomic percentage of each element from XPS measurements.

Table S2. The calculated double layer capacitance (C_{dl}) and ECSA from CV measurements of NCMO, NCMS, and NCMS/NiO-X (X= number of ALD cycles) in 1 M KOH.

Electrocatalyst	C _{dl} (mF cm ⁻²)	ECSA (cm ²)
NCMO	3.1	77
NCMS	26.9	672

NCMS/NiO-20	30.3	757
NCMS/NiO-40	30.8	770
NCMS/NiO-80	30.7	767
NCMS/NiO-200	30.2	755
NCMS/NiO-400	28.8	720

Table S3. Summary of recent reports on OER and HER half-cell performance in 1 M KOH electrolyte with fresh water/deionized water. All overpotentials for 10 mA/cm² current density except specially mentioned.

S.No	Catalyst	HER overpotential (mV)	OER overpotential (mV)	Stability (h)	Ref
1	NiCo ₂ S ₄ /NiMo ₂ S ₄ / ALD-NiO	20 83 for 100 mA/cm ²	186 263 for 100 mA/cm ²	336	This work
2	NiCo ₂ S ₄ /NiS	203 for 100 mA/cm ²	264 for 100 mA/cm ²	240	1
3	NiMoN	38	290 for 50 mA/cm ²	50	2
4	NiMoN	22	230	36	3
5	NiMoN/Ni ₃ N	28	-	24	4
6	NiMoN/Ni ₃ N	37	277	20	5
7	Ni ₃ FeN/r-GO	94	270	100	6
8	$\mathrm{Fe}_{0.9}\mathrm{Ni}_{2.1}\mathrm{S}_2$	72	252 for 100 mA/cm ²	100	7

0		264 for 100	305 for 100	24	8
9	Fe-IN1MON	mA/cm ²	mA/cm ²	24	0
10	Ma C/Ma N		276 for 50	40	9
10	1VIO ₂ C/1VIO ₂ IN	-	mA/cm ²	40	
11	NiEa MS/MOE	00	243 for 100	27	10
11	MITE-WIS/WOT	90	mA/cm ²	21	
12	Ni ₇ S ₆	70	140	24	11
12	D E - N	102	270 60		12
13	P-Fe ₃ N	102	270 60		12
14	F doped CoS ₂	112	366 100		13
15	NiCoN	68	247	247 24	
16	Co4N-CeO2/Graphite	24	239	50	15
		21			
17	W ₂ N/WC	148.5	320	10	16
10	CaVEaN		281 for 100	100	17
10	COVIEN	-	mA/cm ²	100	
10	CuNicN	71.4	312 for 100	60	18
17	Curvi ₂ iv	/1.4	mA/cm ²	00	
20	Co-Mo ₅ N ₆	280 for 1000	_	10	19
20	00 111031 16	mA/cm ²		10	
21	P-NiCo ₂ O ₄ /NF	55	300	10	20
22	Ni ₅ P ₄ /NiCo ₂ O ₄ /NF	27	-	48	21
23	N-Doped	42	242	24	22
25	NiCo ₂ O ₄ @C	12	212	21	
24	N-NiMoO ₄ /NiS ₂	99	283	20	23
25	NiCo ₂ S ₄	80	243	24	24
26	Mo-NiaSa/Ni P	109	238 at 50	48	25
	$1010-10135_2/101_xP_y$	107	mA/cm ²	טד	

	LO		287 at 50			
	IrO_2	-	mA/cm ²	-		
	Pt/C	37	-	-		
27	CDs/NiCo ₂ S ₄ /Ni ₃ S ₂	116	127	12	26	
28	lily like CoNi ₂ S ₄	54	328 at 100 mA/cm ²	10	27	
29	P-NiCo ₂ S ₄	74	-	-	28	
30	NiCo ₂ O ₄ /NiMoS ₄	159	310 at 20 mA/cm ²	12	29	
31	CuCo ₂ S ₄ NW	65	310 at 100 mA/cm ²	20	30	
32	Ni-Co-P	107	270	20	31	
33	NiFe	108 for 100	238 for 100	100	32	
55	LDH@Ni ₃ N/NF	mA/cm ²	mA/cm ²	100		
34	NiCo ₂ S ₄ @g-C ₃ N ₄ -C NT	330	-	-	33	
	CoP/NiCoP	210 for 100	-	24	24	
35		mA/cm ²			34	
	Pt/C	205 for 100	-	-		
		mA/cm ²				
	NiMoN/NiFeN	84 for 100	277 for 100	48		
36		mA/cm ²	mA/cm ²		35	
	NiMoN	56 for 100	350 for 100 48			
		mA/cm ²	mA/cm ²			
	SS wire/Ni ₄ Mo	63 for 100	-	156		
37		mA/cm ²			36	
	SS wire/Ni-FeOOH	_	257 for 100	48		
			mA/cm ²	_		

Table S4. Fitted data of electrochemical impedance spectra data shown in Fig. 4(i) and 5(e).

	Catalyst	R _{s(Ω)}	C _{bulk} (mF)	$R_{bulk}(\Omega)$	C _{dl} (mF)	$R_{CT}(\Omega)$
HER	NCMO	1.210	0.001	0.245	0.342	0.972
	NCMS	1.032	0.058	0.162	0.254	0.378
	NCMS/NiO	1.036	0.078	0.165	0.248	0.249
OER	NCMO	0.796	0.024	0.142	0.642	1.642
	NCMS	0.789	0.044	0.027	0.744	0.569
	NCMS/NiO	0.787	0.037	0.018	0.616	0.331

Table S5. Comparison of overpotential required for 100 mA/cm² current density (extracted from LSV curves) in a two electrode cell with different electrolyte concentration and temperature.

Catalyst	Electrolyte	Without iR compensation (mV)	With iR compensation (mV)
NCMO	1 M KOH + DI water	1040	990
NCMS	1 M KOH + DI water	665	620
	1 M KOH + DI water	561	517
	1 M KOH + Sea water	527	453
NCMS/NiO	1 M KOH + Sea water at 80 °C	377	305
	5 M KOH + Sea water at 80 °C	252	252
	5 M KOH + Sea water at 80 °C After 30 days	275	275

Table S6. Elemental analysis through SEM-EDS measurements of used NCMS/NiO anode (OER)
samples in two electrode cell chronopotentiometry experiments.

Element	As prepared (At %)	After 14 days in DI water electrolysis (At %)	After 30 days in high temperature sea water electrolysis (At %)
0	22.37	24.18	35.02
Мо	1.97	0.96	1.26
S	32.43	26.50	18.09
Со	2.77	5.29	6.11
Ni	40.46	43.07	39.51

Table S7. Performance comparison between NCMS/NiO||NCMS/NiO cell and other reported nonnoble metal based electrolyzers in different alkaline simulated and natural seawater. Natural seawater contains approximately 3.5 % NaCl concentration. The overpotentials are mentioned without iR compensation.

S.No	Electrode OER HER	Electrolyte	Current density (mA/cm ²)	Overpotential (mV)	Stability (h)	Ref
	NiCo2S4/NiMo2S4/	1 M KOH + Seawater		527	100	
1	ALD-NiO \parallel NiCo ₂ S ₄ /NiMo ₂ S ₄ /	1 M KOH + Seawater at 80 °C	100	377	100	This work
		5 M KOH + Seawater at 80 °C		252	720	

			500	524	100	
		1 M KOH + 1.5 M NaCl	400	790	1000	
2	NiFe/NiS _x	1 M KOH + Seawater	400	890	1000	37
	NIO/CI2O3	6 M KOH + 1.5 M NaCl at 80 °C	400	490	1000	
		1 M KOH +	100	395	-	
3	NiMoN/NiFeN NiMoN	Seawater	500	751	-	35
		6 M KOH + Seawater	100	270	600	
4	NiFe LDH Pt	0.1 M KOH + 0.5 M NaCl	10	359	2	38
5	Co ₂ [Fe(CN) ₆] NiMoS	Phosphate buffer + Seawater (pH~7)	10	870	20	39
6	CoSe CoSe	Natural Seawater (pH~7)	10	570	-	40
7	Ni ₃ N/Ni ₃ S ₂ Ni ₃ N/Ni ₃ S ₂	Natural Seawater (pH~7)	48.3	570	-	41
8	S-(Ni/Fe)OOH NiCoN/Ni _x P	Natural Seawater (pH~7)	10	580	24	42
9	FeOOH/NiCoOOH/ Graphene oxide	1 M KOH + 0.5 M NaCl at 60 °C	1000	770	378	43
10	NiCo₂S₄/NiS ∥ NiCo₂S₄/NiS	6 M KOH + Seawater at 80	100	337	240	1

	°C	1000	743	-	
--	----	------	-----	---	--

Table S8. Atomic percentage of each element from XPS measurements of used OER and HER

 NCMS/NiO electrode after industrial electrolysis for 30 days.

	S 2p	Ni 2p	O 2p	Cl 2p	Ca 2p	Mg 2p
OER	3.24	24.14	36.13	2.86	0.0	0.0
HER	1.93	22.44	37.25	0.19	1.44	0.0

References:

- 1. S. Seenivasan, H. Jung, J. W. Han and D.-H. Kim, *Small Methods*, 2022, 6, 2101308.
- 2. B. Chang, J. Yang, Y. L. Shao, L. Zhang, W. L. Fan, B. B. Huang, Y. Z. Wu and X. P. Hao, *Chemsuschem*, 2018, **11**, 3198-3207.
- 3. Y. Wang, Y. Sun, F. Yan, C. L. Zhu, P. Gao, X. T. Zhang and Y. J. Chen, *J. Mater. Chem. A*, 2018, **6**, 8479-8487.
- 4. W. Hua, H. Sun, H. Liu, Y. Li and J.-G. Wang, *Appl. Surf. Sci.*, 2021, **540**, 148407.
- 5. A. P. Wu, Y. Xie, H. Ma, C. G. Tian, Y. Gu, H. J. Yan, X. M. Zhang, G. Y. Yang and H. G. Fu, *Nano Energy*, 2018, **44**, 353-363.
- 6. Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. M. Chen, S. Komarneni, D. J. Yang and X. D. Yao, *Acs Nano*, 2018, **12**, 245-253.
- 7. B. Fei, Z. L. Chen, J. X. Liu, H. B. Xu, X. X. Yan, H. L. Qing, M. Chen and R. B. Wu, *Adv. Energy Mater.*, 2020, **10**.
- 8. C. Zhu, Z. Yin, W. Lai, Y. Sun, L. Liu, X. Zhang, Y. Chen and S.-L. Chou, *Adv. Energy Mater.*, 2018, **8**, 1802327.
- 9. Z. K. Kou, T. T. Wang, Q. L. Gu, M. Xiong, L. R. Zheng, X. Li, Z. H. Pan, H. Chen, F. Verpoort, A. K. Cheetham, S. C. Mu and J. Wang, *Adv. Energy Mater.*, 2019, **9**.
- 10. M. Zhao, W. Li, J. Y. Li, W. H. Hu and C. M. Li, *Adv Sci*, 2020, 7.
- 11. A. P. Tiwari, Y. Yoon, T. G. Novak, K. S. An and S. Jeon, *Acs Appl Nano Mater*, 2019, **2**, 5061-5070.
- 12. G. Li, J. Yu, W. Yu, L. Yang, X. Zhang, X. Liu, H. Liu and W. Zhou, *Small*, 2020, 16, 2001980.
- 13. L. Lei, D. Huang, C. Zhang, R. Deng, S. Chen and Z. Li, J. Catal., 2020, 385, 129-139.
- 14. C. Ray, S. C. Lee, B. J. Jin, A. Kundu, J. H. Park and S. C. Jun, *J. Mater. Chem. A*, 2018, **6**, 4466-4476.
- 15. H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C.-P. Li and M. Du, *Adv Funct Mater*, 2020, **30**, 1910596.
- 16. J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen, H. Li, W. Yuan, Y. Qu and X. Guo, *Adv. Mater.*, 2020, **32**, 1905679.
- 17. D. Liu, H. Ai, J. Li, M. Fang, M. Chen, D. Liu, X. Du, P. Zhou, F. Li, K. H. Lo, Y. Tang, S. Chen, L. Wang, G. Xing and H. Pan, *Adv. Energy Mater.*, 2020, **10**, 2002464.
- Z. Wang, L. Xu, F. Huang, L. Qu, J. Li, K. A. Owusu, Z. Liu, Z. Lin, B. Xiang, X. Liu, K. Zhao, X. Liao, W. Yang, Y.-B. Cheng and L. Mai, *Adv. Energy Mater.*, 2019, 9, 1900390.

- 19. F. Lin, Z. Dong, Y. Yao, L. Yang, F. Fang and L. Jiao, Adv. Energy Mater., 2020, 10, 2002176.
- 20. W. J. Chu, Z. J. Shi, Y. D. Hou, D. N. Ma, X. Bai, Y. F. Gao and N. J. Yang, *ACS Appl. Mater. Interfaces*, 2020, **12**, 2763-2772.
- T. Zhang, K. N. Yang, C. Wang, S. Y. Li, Q. Q. Zhang, X. J. Chang, J. T. Li, S. M. Li, S. F. Jia, J. B. Wang and L. Fu, *Adv. Energy Mater.*, 2018, 8.
- 22. Y. Ha, L. X. Shi, X. X. Yan, Z. L. Chen, Y. P. Li, W. Xu and R. B. Wu, *ACS Appl. Mater. Interfaces*, 2019, **11**, 45546-45553.
- 23. L. An, J. Feng, Y. Zhang, R. Wang, H. Liu, G.-C. Wang, F. Cheng and P. Xi, *Adv Funct Mater*, 2019, **29**, 1805298.
- 24. Z. Kang, H. Guo, J. Wu, X. Sun, Z. Zhang, Q. Liao, S. Zhang, H. Si, P. Wu, L. Wang and Y. Zhang, *Adv Funct Mater*, 2019, **29**, 1807031.
- 25. X. Luo, P. X. Ji, P. Y. Wang, R. L. Cheng, D. Chen, C. Lin, J. A. Zhang, J. W. He, Z. H. Shi, N. Li, S. Q. Xiao and S. C. Mu, *Adv. Energy Mater.*, 2020, **10**.
- 26. X. Y. Zhao, H. Liu, Y. Rao, X. X. Li, J. L. Wang, G. S. Xia and M. B. Wu, *ACS Sustain. Chem. Eng.*, 2019, **7**, 2610-2618.
- 27. J. W. Li, Q. N. Zhuang, P. M. Xu, D. W. Zhang, L. C. Wei and D. S. Yuan, *Chinese J Catal*, 2018, **39**, 1403-1410.
- 28. H. H. Gu, W. Fan and T. X. Liu, *Nanoscale Horiz.*, 2017, **2**, 277-283.
- 29. D. Zhao, M. Dai, H. Liu, K. Chen, X. Zhu, D. Xue, X. Wu and J. Liu, *Adv. Mater. Interfaces*, 2019, **6**, 1901308.
- 30. S. Czioska, J. Wang, X. Teng and Z. Chen, ACS Sustain. Chem. Eng., 2018, 6, 11877-11883.
- 31. E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu and X. W. Lou, *Energy Environ. Sci.*, 2018, 11, 872-880.
- 32. B. Wang, S. Jiao, Z. Wang, M. Lu, D. Chen, Y. Kang, G. Pang and S. Feng, *J. Mater. Chem. A*, 2020, **8**, 17202-17211.
- 33. X. P. Han, W. Zhang, X. Y. Ma, C. Zhong, N. Q. Zhao, W. B. Hu and Y. D. Deng, *Adv. Mater.*, 2019, **31**.
- 34. Y. Lin, K. A. Sun, S. J. Liu, X. M. Chen, Y. S. Cheng, W. O. Cheong, Z. Chen, L. R. Zheng, J. Zhang, X. Y. Li, Y. Pan and C. Chen, *Adv. Energy Mater.*, 2019, **9**.
- 35. L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen and Z. Ren, *Nat. Commun.*, 2019, **10**, 5106.
- 36. V. R. Jothi, K. Karuppasamy, T. Maiyalagan, H. Rajan, C. Y. Jung and S. C. Yi, *Adv. Energy Mater.*, 2020, **10**.
- Y. Kuang, M. J. Kenney, Y. Meng, W.-H. Hung, Y. Liu, J. E. Huang, R. Prasanna, P. Li, Y. Li, L. Wang, M.-C. Lin, M. D. McGehee, X. Sun and H. Dai, *Proceedings of the National Academy of Sciences*, 2019, 116, 6624-6629.
- 38. F. Dionigi, T. Reier, Z. Pawolek, M. Gliech and P. Strasser, *Chemsuschem*, 2016, 9, 962-972.
- S. H. Hsu, J. W. Miao, L. P. Zhang, J. J. Gao, H. M. Wang, H. B. Tao, S. F. Hung, A. Vasileff, S. Z. Qiao and B. Liu, *Adv. Mater.*, 2018, 30.
- 40. Y. Zhao, B. Jin, Y. Zheng, H. Jin, Y. Jiao and S.-Z. Qiao, Adv. Energy Mater., 2018, 8, 1801926.
- 41. Y. Zhao, B. Jin, A. Vasileff, Y. Jiao and S.-Z. Qiao, J. Mater. Chem. A, 2019, 7, 8117-8121.
- 42. L. Yu, L. Wu, S. Song, B. McElhenny, F. Zhang, S. Chen and Z. Ren, *Acs Energy Lett*, 2020, **5**, 2681-2689.
- 43. A. R. Jadhav, A. Kumar, J. Lee, T. Yang, S. Na, J. Lee, Y. Luo, X. Liu, Y. Hwang, Y. Liu and H. Lee, *J. Mater. Chem. A*, 2020, **8**, 24501-24514.