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Figure S1. The simplified schematic fabrication process of Zn-doped δ-MnO2.

Figure S2. TGA profiles of pristine and Zn-doped MnO2 samples from 27 to 750 °C.

Figure S3. Full-scan XPS spectra of pristine and Zn-doped MnO2.
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Table S1. XRF analysis results of pristine and Zn-doped MnO2 samples. 

Samples Mol % K Mol % Mn Mol % Zn Formula

Pristine MnO2 18.9% 81.1% 0 K0.19MnO2

Zn-doped MnO2 18.3% 80.3% 1.4% K0.18Zn0.014MnO2

Figure S4. Raman spectra of pristine and Zn-doped MnO2 materials. 

Figure S5. Cycling performance of pristine and Zn-doped MnO2 ZIBs at 200 mA g-1 for 500 cycles.
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Figure S6. CV curves of (a) Zn-doped MnO2 and (b) pristine MnO2 ZIBs at various scan rates.

Figure S7. The EELS profiles of manganese L2,3 edges of pristine and Zn-doped MnO2 cathodes discharged to 1V.

Fig. S7 shows electron energy-loss spectroscopy (EELS) spectra of pristine and Zn-doped 

MnO2 cathodes discharged to V5 (1.0 V). In general, the excitation edges shift to lower energy-

loss for a lower oxidation state and the integral intensity ratio of L3 and L2 excitation peaks of Mn 

is correlated to its oxidation state. Compared to the standard Mn4+ spectrum, the L3 peak maximum 

exhibits lower energy losses (Zn-doped MnO2: 640.95 eV; pristine MnO2: 641.05 eV), and the 

I(L3)/I(L2) white line intensity ratios (Zn-doped MnO2: 3.50; pristine MnO2: 3.46) correspond to a 

mixed valency of Mn2+ and Mn3+, confirming the existence of Mn2+ in electrodes.1,2 



5

Figure S8. Nyquist plots of Zn-doped MnO2 ZIBs at different voltages vs. Zn2+/Zn: (a) V1 (1.8 V) and V2 (1.44 V); 

(b) V3 (1.31 V), V4 (1.28 V) and V5 (1.0 V)

Compared with the charge transfer resistance (Rct) at OCV (~1.5 V vs Zn2+/Zn), the Rct at 1.31 

V became larger in Zn-doped MnO2 ZIBs, while the Rct of pristine MnO2 ZIBs decreased slightly. 

To evaluate the ohmic resistance changes with voltage changes, we performed EIS on Zn-doped 

MnO2 ZIBs at different voltages. Fig. S6a shows the Nyquist plots of Zn-doped MnO2 ZIBs at V1-

V5. The ohmic resistance of ZIBs increased with both H+ and Zn2+ insertion. The smaller Rct at 

1.31 V than that at OCV in pristine MnO2 ZIBs may be due to the intercalation of Zn ions into the 

δ-MnO2 crystal structure, which is similar to the role of zinc doping. 

Figure S9. Charge/discharge curves of cathode-free ZIBs for 50 cycles at a low current of 0.06 mA.
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Calculation of the theoretical capacity

The theoretical capacity is calculated using the equation:

𝐶𝑡=
𝑛𝐹

3600 ×𝑀
(1)

Where  is the number of electrons involved in the electrochemical reactions,  is Faraday 𝑛 𝐹

Constant (96485.34 C mol-1), and  is molecular weight (g mol-1).𝑀

Calculation of the specific energy

Due to the excess Zn foil anode, ZIBs use the mass of active cathode materials to calculate the 

energy density. The equation is provided below:

𝐸=

𝑡𝑐𝑢𝑡𝑜𝑓𝑓

∫
0

(𝑉(𝑡) × 𝑖)𝑑𝑡

3600

(2)

where V(t) is voltage (function of time, V), i is the current density (mA g-1), and  is the 𝑡𝑐𝑢𝑡𝑜𝑓𝑓

cutoff time. Graphically, it is the area under the voltage vs. specific capacity curve. 
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Figure S10. (a) XRD patterns, (b) high-resolution Zn 2p XPS spectra, (c) Nyquist plots of pristine, 1 % and 2% Zn-

doped δ-MnO2. (d) Discharge-charge profiles and (e) rate performance of 2% Zn-doped MnO2 ZIBs. (f) XRD 

patterns of 2% Zn-doped MnO2 cathodes at the 30th and 100th discharged states.

We prepared pure δ-MnO2, 1% and 2% Zn doped δ-MnO2. Fig. S10a shows the XRD patterns 

of all three materials and 2% Zn doped MnO2 has the similar crystallographic structure as both 

pristine and 1% Zn doped MnO2. The high-resolution Zn 2p spectra in Fig. S10b confirm the 

increasing amount of Zn doping in 2% doped MnO2 samples. Additionally, the amount of Zn 

doping in 2% doped samples was evaluated to be 2.7 mol % by XRF characterization, which is 

higher than that in 1% Zn doped samples (1.4 mol %). EIS data in Fig. S10c indicates that 1% 

doped MnO2 cathode has the smallest electron transfer resistance (Rct) and the highest ion diffusion 

rate, which should provide the best reaction kinetics. For 2% doped MnO2 ZIBs, a maximum 

discharge capacity of 331 mAh g-1 was achieved after 20 cycles at 25 mA g-1, as shown in Fig. 

S10d. The highest specific capacity and the rate performance (Fig. S10e) of 2% doped MnO2 ZIBs 

are better than that of pristine MnO2 ZIBs, but inferior to that of 1% Zn-doped MnO2 ZIBs. 

Moreover, the XRD patterns of 2% doped MnO2 cathodes at discharged states after different cycles 

in Fig. S10f show that the birnessite MnO2 phase is still retained after 30 cycles of charge/discharge 

procedures, but is completely transferred to Zn2Mn4O8 after 100 cycles. Based on the 

characterization of materials and electrochemical measurement results, the content of Zn in the 

Zn-doped MnO2 sample was optimized to be 1%. 
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Table S2. Comparison of electrochemical performances of the Zn-doped MnO2 cathodes with reported cathode 

materials in aqueous zinc-ion batteries.

Cathode Electrolyte Potential 
(V)

Specific 
Capacity 
(mAh g-1)

Specific 
Energy (W 

h Kg-1)
Ref.

Zn-doped MnO2
2 M ZnSO4+0.2 M 

MnSO4
1.0-1.8 455 628 This 

work

α-
(Mn2O3−MnO2)

2 M ZnSO4+0.15 M 
MnSO4

0.9-1.9 183 187.5 3

Cu3(HHTP)2 3M Zn(CF3SO3)2 0.5-1.5 228 – 4

(NH4)2V10O25 3M Zn(CF3SO3)2 0.4-1.5 408 287 5

MnO/C@rGO 2 M ZnSO4+0.1 M 
MnSO4

0.8-1.9 315 – 6

δ-MnO2
ZnSO4-based gel 

electrolyte 0-2.0 324 531 7

K0.8Mn8O16
2 M ZnSO4+0.1 M 

MnSO4
1.0-1.9 317 436 8

α-K1.33Mn8O16
2 M ZnSO4+0.1 M 

MnSO4
0.8-1.9 320 398 9

δ-
MnO2/Graphite 1 M ZnSO4 1.0-1.8 235 – 10

Defect-enriched 
MnO2

2 M ZnSO4+0.1 M 
MnSO4

1.0-1.9 388 406 11

γ-MnO2
1 Zn(CH3COO)2+0.4 

Mn(CH3COO)2
1.0-1.8 556 – 12

ε-MnO2
2 M ZnSO4+1 M 

MnSO4+0.1 M H2SO4
1.0-1.95 570 409 13

ε-MnO2
2.5 M H2SO4+0.5 M 

MnSO4
1.0-2.8 616 1621.7 14

The (–) symbol signifies that the information has not been reported.

Table S3. The fitted results of electrolyte resistance (Rs) and charge-transfer resistance (Rct) of pristine and Zn-

doped MnO2 ZIBs. OCV: open circuit voltage

Samples Rs Rct

OCV 25.4 407.4
Pristine MnO2

1.31 V vs. Zn2+/Zn 12.3 348.4

OCV 11.6 132.3
Zn-doped MnO2

1.31 V vs. Zn2+/Zn 8.9 294.2
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Figure S11. XRD patterns of the reference electrode with Super P and PVDF coated on the stainless-steel substrate. 

Figure S12. Relative atomic concentration of Zn-doped MnO2 cathodes at different states via AES.
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Figure 13. (a) Full-scan XPS spectra of pristine and Zn-doped MnO2 cathodes. (b) Full-scan XPS spectra of Zn-

doped MnO2 cathodes at different states.

Figure S14. Ex situ XRD patterns of pristine MnO2 cathodes during the discharge process.
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Figure S15. Galvanostatic charge/discharge curves of (a) Zn-doped MnO2 ZIBs for first 30 cycles and (b) pristine 

MnO2 ZIBs for first 10 cycles. Bar chart showing the percentage of capacity contribution of Mn4+/Mn3+ and 

Mn3+/Mn2+ redox reactions of (c) Zn-doped MnO2 ZIBs and (d) pristine MnO2 ZIBs. 

Figure S16. XRD patterns of (a) pristine MnO2 cathodes and (b) Zn-doped MnO2 cathodes at the 30th and 100th 

discharged states.
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