Supplementary Information

A Two-electron Transfer Mechanism of Zn-doped δ-MnO₂ Cathode

toward Aqueous Zn-ion Batteries with Superhigh Capacity

Wen Zhao¹, Jared Fee², Harshul Khanna¹, Seth March², Nathaniel Nisly², Samantha Joy B. Rubio², Can Cui¹, Zhuo Li³ and Steven L. Suib^{1, 2, *}

1. Department of Materials Science and Engineering & Institute of Materials Science, University

of Connecticut, 97 N. Eagleville Rd., Storrs, Connecticut 06269-3136, United States

2. Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd., Storrs, Connecticut 06269-3060, United States

3. Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

* Email: steven.suib@uconn.edu

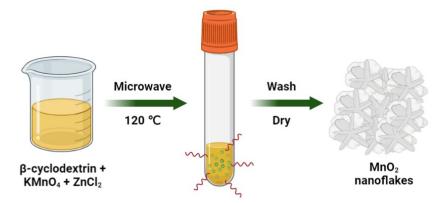


Figure S1. The simplified schematic fabrication process of Zn-doped δ -MnO₂.

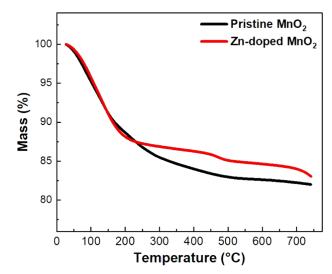


Figure S2. TGA profiles of pristine and Zn-doped MnO₂ samples from 27 to 750 °C.

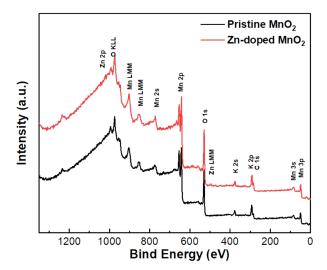


Figure S3. Full-scan XPS spectra of pristine and Zn-doped MnO₂.

Samples	Mol % K	Mol % Mn	Mol % Zn	Formula
Pristine MnO ₂	18.9%	81.1%	0	K _{0.19} MnO ₂
Zn-doped MnO ₂	18.3%	80.3%	1.4%	K _{0.18} Zn _{0.014} MnO ₂

Table S1. XRF analysis results of pristine and Zn-doped MnO₂ samples.

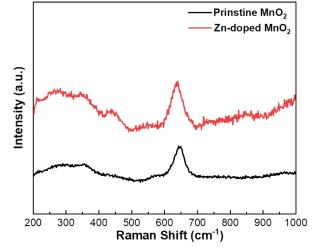


Figure S4. Raman spectra of pristine and Zn-doped MnO₂ materials.

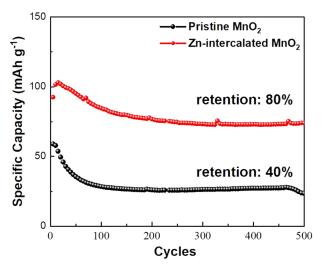


Figure S5. Cycling performance of pristine and Zn-doped MnO₂ ZIBs at 200 mA g⁻¹ for 500 cycles.

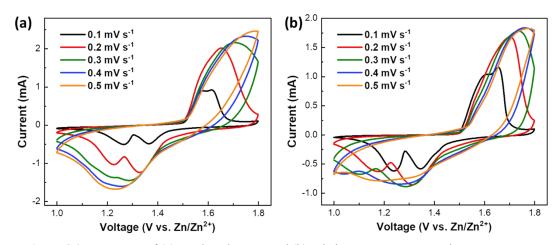


Figure S6. CV curves of (a) Zn-doped MnO₂ and (b) pristine MnO₂ ZIBs at various scan rates.

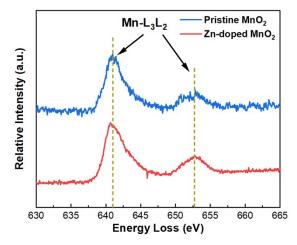


Figure S7. The EELS profiles of manganese $L_{2,3}$ edges of pristine and Zn-doped MnO₂ cathodes discharged to 1V.

Fig. S7 shows electron energy-loss spectroscopy (EELS) spectra of pristine and Zn-doped MnO_2 cathodes discharged to V5 (1.0 V). In general, the excitation edges shift to lower energy-loss for a lower oxidation state and the integral intensity ratio of L₃ and L₂ excitation peaks of Mn is correlated to its oxidation state. Compared to the standard Mn⁴⁺ spectrum, the L₃ peak maximum exhibits lower energy losses (Zn-doped MnO₂: 640.95 eV; pristine MnO₂: 641.05 eV), and the I(L₃)/I(L₂) white line intensity ratios (Zn-doped MnO₂: 3.50; pristine MnO₂: 3.46) correspond to a mixed valency of Mn²⁺ and Mn³⁺, confirming the existence of Mn²⁺ in electrodes.^{1,2}

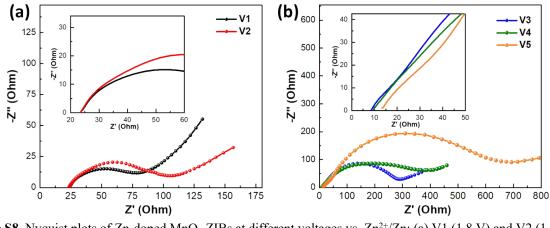


Figure S8. Nyquist plots of Zn-doped MnO₂ ZIBs at different voltages vs. Zn²⁺/Zn: (a) V1 (1.8 V) and V2 (1.44 V);
(b) V3 (1.31 V), V4 (1.28 V) and V5 (1.0 V)

Compared with the charge transfer resistance (R_{ct}) at OCV (~1.5 V vs Zn²⁺/Zn), the R_{ct} at 1.31 V became larger in Zn-doped MnO₂ ZIBs, while the R_{ct} of pristine MnO₂ ZIBs decreased slightly. To evaluate the ohmic resistance changes with voltage changes, we performed EIS on Zn-doped MnO₂ ZIBs at different voltages. Fig. S6a shows the Nyquist plots of Zn-doped MnO₂ ZIBs at V1-V5. The ohmic resistance of ZIBs increased with both H⁺ and Zn²⁺ insertion. The smaller R_{ct} at 1.31 V than that at OCV in pristine MnO₂ ZIBs may be due to the intercalation of Zn ions into the δ -MnO₂ crystal structure, which is similar to the role of zinc doping.

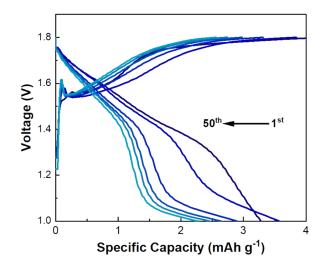


Figure S9. Charge/discharge curves of cathode-free ZIBs for 50 cycles at a low current of 0.06 mA.

Calculation of the theoretical capacity

The theoretical capacity is calculated using the equation:

$$C_t = \frac{nF}{3600 \times M} \tag{1}$$

Where n is the number of electrons involved in the electrochemical reactions, F is Faraday Constant (96485.34 C mol⁻¹), and M is molecular weight (g mol⁻¹).

Calculation of the specific energy

Due to the excess Zn foil anode, ZIBs use the mass of active cathode materials to calculate the energy density. The equation is provided below:

$$E = \frac{\int_{0}^{t_{cutoff}} (V(t) \times i)dt}{3600}$$
(2)

where V(t) is voltage (function of time, V), *i* is the current density (mA g⁻¹), and t_{cutoff} is the cutoff time. Graphically, it is the area under the voltage vs. specific capacity curve.

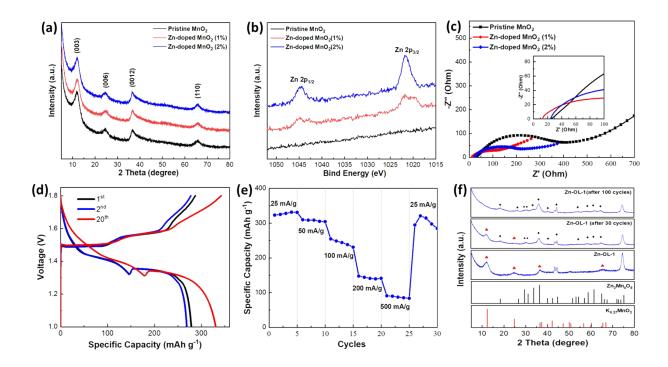


Figure S10. (a) XRD patterns, (b) high-resolution Zn 2p XPS spectra, (c) Nyquist plots of pristine, 1 % and 2% Zn-doped δ-MnO₂. (d) Discharge-charge profiles and (e) rate performance of 2% Zn-doped MnO₂ ZIBs. (f) XRD patterns of 2% Zn-doped MnO₂ cathodes at the 30th and 100th discharged states.

We prepared pure δ -MnO₂, 1% and 2% Zn doped δ -MnO₂. Fig. S10a shows the XRD patterns of all three materials and 2% Zn doped MnO₂ has the similar crystallographic structure as both pristine and 1% Zn doped MnO₂. The high-resolution Zn 2p spectra in Fig. S10b confirm the increasing amount of Zn doping in 2% doped MnO₂ samples. Additionally, the amount of Zn doping in 2% doped samples was evaluated to be 2.7 mol % by XRF characterization, which is higher than that in 1% Zn doped samples (1.4 mol %). EIS data in Fig. S10c indicates that 1% doped MnO₂ cathode has the smallest electron transfer resistance (R_{ct}) and the highest ion diffusion rate, which should provide the best reaction kinetics. For 2% doped MnO₂ ZIBs, a maximum discharge capacity of 331 mAh g⁻¹ was achieved after 20 cycles at 25 mA g⁻¹, as shown in Fig. S10d. The highest specific capacity and the rate performance (Fig. S10e) of 2% doped MnO₂ ZIBs are better than that of pristine MnO₂ ZIBs, but inferior to that of 1% Zn-doped MnO₂ ZIBs. Moreover, the XRD patterns of 2% doped MnO₂ cathodes at discharged states after different cycles in Fig. S10f show that the birnessite MnO₂ phase is still retained after 30 cycles of charge/discharge procedures, but is completely transferred to Zn₂Mn₄O₈ after 100 cycles. Based on the characterization of materials and electrochemical measurement results, the content of Zn in the Zn-doped MnO_2 sample was optimized to be 1%.

 Table S2. Comparison of electrochemical performances of the Zn-doped MnO2 cathodes with reported cathode materials in aqueous zinc-ion batteries.

 Optimized Specific

 Specific
 Specific

 Potential
 Specific
 Specific

 Cathode
 Potential
 Specific
 Specific

 Potential
 Specific
 Specific

Cathode	Electrolyte	Potential (V)	Specific Capacity (mAh g ⁻¹)	Specific Energy (W h Kg-1)	Ref.
Zn-doped MnO ₂	2 M ZnSO ₄ +0.2 M MnSO ₄	1.0-1.8	455	628	This work
α- (Mn ₂ O ₃ -MnO ₂)	2 M ZnSO ₄ +0.15 M MnSO ₄	0.9-1.9	183	187.5	3
Cu ₃ (HHTP) ₂	3M Zn(CF ₃ SO ₃) ₂	0.5-1.5	228	_	4
(NH ₄) ₂ V ₁₀ O ₂₅	3M Zn(CF ₃ SO ₃) ₂	0.4-1.5	408	287	5
MnO/C@rGO	2 M ZnSO ₄ +0.1 M MnSO ₄	0.8-1.9	315	_	6
δ-MnO ₂	ZnSO ₄ -based gel electrolyte	0-2.0	324	531	7
K _{0.8} Mn ₈ O ₁₆	2 M ZnSO ₄ +0.1 M MnSO ₄	1.0-1.9	317	436	8
α-K _{1.33} Mn ₈ O ₁₆	2 M ZnSO ₄ +0.1 M MnSO ₄	0.8-1.9	320	398	9
δ- MnO ₂ /Graphite	1 M ZnSO ₄	1.0-1.8	235	_	10
Defect-enriched MnO ₂	2 M ZnSO ₄ +0.1 M MnSO ₄	1.0-1.9	388	406	11
γ-MnO ₂	1 Zn(CH ₃ COO) ₂ +0.4 Mn(CH ₃ COO) ₂	1.0-1.8	556	_	12
ε-MnO ₂	2 M ZnSO ₄ +1 M MnSO ₄ +0.1 M H ₂ SO ₄	1.0-1.95	570	409	13
ε-MnO ₂	2.5 M H ₂ SO ₄ +0.5 M MnSO ₄	1.0-2.8	616	1621.7	14

The (-) symbol signifies that the information has not been reported.

Table S3. The fitted results of electrolyte resistance (R_s) and charge-transfer resistance (R_{ct}) of pristine and Zn-
doped MnO2 ZIBs. OCV: open circuit voltage

S	R _s	R _{ct}	
Pristine MnO ₂	OCV	25.4	407.4
	1.31 V vs. Zn ²⁺ /Zn	12.3	348.4
Zn-doped MnO ₂	OCV	11.6	132.3
	1.31 V vs. Zn ²⁺ /Zn	8.9	294.2

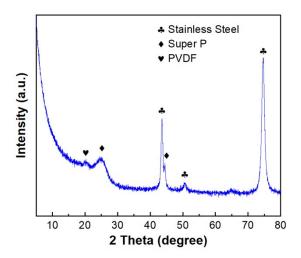


Figure S11. XRD patterns of the reference electrode with Super P and PVDF coated on the stainless-steel substrate.

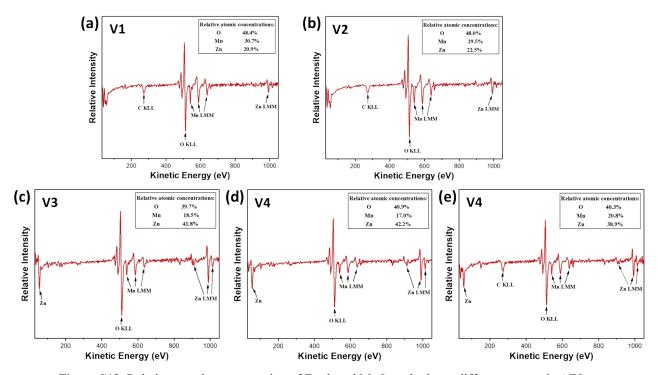


Figure S12. Relative atomic concentration of Zn-doped MnO₂ cathodes at different states via AES.

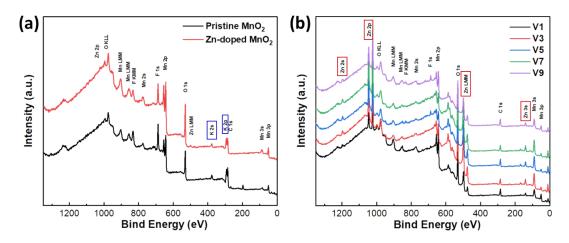


Figure 13. (a) Full-scan XPS spectra of pristine and Zn-doped MnO₂ cathodes. (b) Full-scan XPS spectra of Zndoped MnO₂ cathodes at different states.

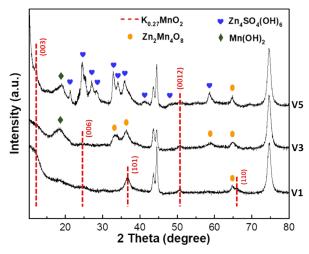


Figure S14. Ex situ XRD patterns of pristine MnO₂ cathodes during the discharge process.

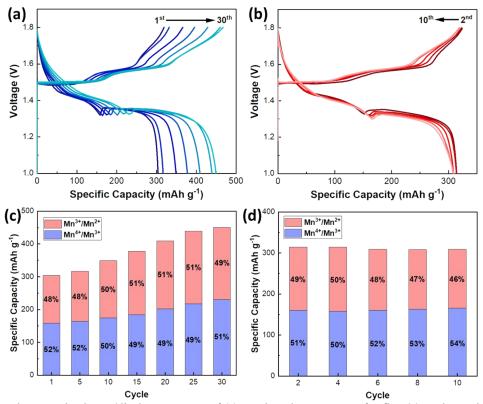


Figure S15. Galvanostatic charge/discharge curves of (a) Zn-doped MnO₂ ZIBs for first 30 cycles and (b) pristine MnO₂ ZIBs for first 10 cycles. Bar chart showing the percentage of capacity contribution of Mn⁴⁺/Mn³⁺ and Mn³⁺/Mn²⁺ redox reactions of (c) Zn-doped MnO₂ ZIBs and (d) pristine MnO₂ ZIBs.

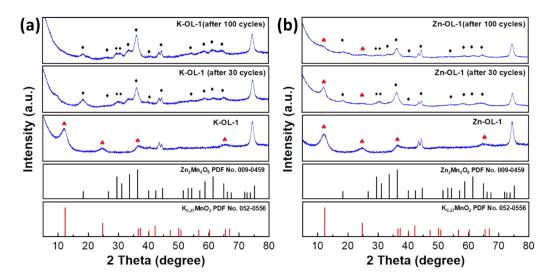


Figure S16. XRD patterns of (a) pristine MnO₂ cathodes and (b) Zn-doped MnO₂ cathodes at the 30th and 100th discharged states.

References

- 1 H. Tan, J. Verbeeck, A. Abakumov and G. Van Tendeloo, *Ultramicroscopy*, 2012, **116**, 24–33.
- S. Zhang, K. J. Livi, A. C. Gaillot, A. T. Stone, D. R. Veblen, *American Mineralogist*, 2010, 95(11-12), 1741-1746.
- J. Long, F. Yang, J. Cuan, J. Wu, Z. Yang, H. Jiang, R. Song, W. Song, J. Mao and Z. Guo, *ACS Appl. Mater. Interfaces*, 2020, **12**, 32526–32535.
- 4 K. W. Nam, S. S. Park, R. dos Reis, V. P. Dravid, H. Kim, C. A. Mirkin and J. F. Stoddart, *Nat. Commun.*, 2019, **10**, 1–10.
- 5 J. Cao, D. Zhang, Y. Yue, X. Wang, T. Pakornchote, T. Bovornratanaraks, X. Zhang, Z. S. Wu and J. Qin, *Nano Energy*, 2021, **84**, 105876.
- 6 F. Tang, J. Gao, Q. Ruan, X. Wu, X. Wu, T. Zhang, Z. Liu, Y. Xiang, Z. He and X. Wu, *Electrochim. Acta*, 2020, **353**, 136570.
- 7 Y. Jiang, D. Ba, Y. Li and J. Liu, *Adv. Sci.*, 2020, DOI:10.1002/advs.201902795.
- 8 J. Wang, J. G. Wang, H. Liu, Z. You, Z. Li, F. Kang and B. Wei, *Adv. Funct. Mater.*, 2021, DOI:10.1002/adfm.202007397.
- 9 G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang, X. Cao, X. Zheng, A. Pan and S. Liang, *Adv. Funct. Mater.*, 2019, **29**, 1–9.
- 10 S. Khamsanga, R. Pornprasertsuk, T. Yonezawa, A. A. Mohamad and S. Kheawhom, *Sci. Rep.*, 2019, **9**, 1–9.
- 11 J. Wang, J. G. Wang, X. Qin, Y. Wang, Z. You, H. Liu and M. Shao, *ACS Appl. Mater. Interfaces*, 2020, **12**, 34949–34958.
- 12 X. Zeng, J. Liu, J. Mao, J. Hao, Z. Wang, S. Zhou, C. D. Ling and Z. Guo, *Adv. Energy Mater.*, 2020, **10**, 1–9.
- 13 D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen, L. Gu, K. Davey and S. Z. Qiao, *Angew. Chemie Int. Ed.*, 2019, **58**, 7823–7828.
- 14 C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong, Y. Li, C. Sun, X. Han, Y. Deng, N. Zhao and W. Hu, *Nat. Energy*, 2020, 5, 440–449.