•••

Two-Dimensional β -PdX₂ (X = S, Te) Monolayers for Efficient Solar Energy Conversion Applications

Mukesh Jakhar and Ashok Kumar*

Department of Physics, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India

(February 24, 2022)

*Corresponding Author:

ashokphy@cup.edu.in (Ashok Kumar)

Structure and Stability

Structures	Lattice Constants (Bulk)			Lattice C (Mono	Constants Dayer)	Pd-X, X-X (X=S,Te)	Pd-X, X-X (X=S,Te)	
	a (Å)	b (Å)	c (Å)	a (Å)	b (Å)	(Bulk)	(Monolayer)	
β-PdS ₂	3.49	4.32	5.0	3.48	4.31	2.35, 2.11	2.35, 2.11	
β-PdTe ₂	3.96	4.93	5.42	3.95	4.86	2.64, 2.86	2.64, 2.80	

Table S1. Structural properties of β -PdX₂ bulk and monolayer.

Fig. S1 (a) The calculated phonon dispersion spectra of β -PdS₂ monolayer. The AIMD total energy fluctuations at (b) 300 K, (c) 500 K, and (d) 1000 K with the snapshot of β -PdS₂ monolayer before and after a 5000 fs AIMD simulations.

Fig. S2 (a) The calculated phonon dispersion spectra of β -PdTe₂ monolayer. The AIMD kinetic and total energy fluctuations at (b) 300 K, (c) 500 K, and (d) 1000 K with the snapshot of β -PdTe₂ monolayer before and after a 5000 fs AIMD simulations.

Fig. S3 The calculated band structure for β -PdS₂ monolayer with spin-orbital coupling (SOC) (red) and without SOC (black) extracted from PBE functional.

М

Fig. S4 The calculated band structure for β -PdTe₂ monolayer with spin-orbital coupling (SOC) (red) and without SOC (black) extracted from PBE functional.

Carrier Mobilities

The charge carrier mobilities have been calculated using $\mu_{2D} = \frac{e\hbar^3 C_{2D}}{K_B Tm^*m_a^* E_i^2}$ where, C_{2D} is the elastic modulus of the material along transport direction and is given by $C_{2D} = \frac{1}{S_0} \left(\frac{\delta^2 E_{total}}{\delta \epsilon^2} \right)$. E_{total} , ϵ , and S_0 are the total energy, uniaxial strain, and the unstrained unit cell area, respectively. E_i is the deformation potential which is defined as $E_i \frac{\delta E_{edge}}{\delta \epsilon}$, where E_{edge} is the energy of VBM or CBM. m^{*} is the effective mass in the transport direction (i.e., either along x or y direction), and m_a^* is the average effective mass given by $\sqrt{m_x^* m_y^*}$.

Table S2: β -PdX₂ monolayer: The effective mass (m^{*}), the elastic modulus of the material (C_{2D}), the deformation potential (E_i), and the charge carrier mobilities (μ_{2D}).

Material	Charge Type	m */ m ₀	$C_{2D} (J/m^2)$	$E_i(eV)$	$\mu_{2D}(cm^2V^{-1}S^{-1})$
	h(x)	5.25	46.14	1.565	25.75
β-PdS2	e(x)	0.46	46.14	2.55	1041.87
	h(y)	1.72	26.56	2.0	27.60
	e(y)	0.22	26.56	2.7	1069.15
	h(x)	0.84	40.55	4.34	107.92
β-PdTe2	e(x)	0.27	40.55	2.0	1258.47
	h(y)	0.32	8.89	1.48	544.86
	e(y)	1.56	8.89	3.38	16.71

Thermodynamic Oxidation and Reduction Potentials of β-PdS₂ monolayer in Aqueous Solution

In the light of componential analysis and the modified method mentioned in the previous literature¹, we assume the β -PdS₂ monolayer can be oxidized and reduced by the photogenerated holes and electrons through the following reactions: Reduction

$$PdS_2 + 2H_2 \rightarrow Pd + 2 (H_2S)$$
(1)

Oxidation

••

$$PdS_2 + 2H_2O \rightarrow 2S + PdO + H_2$$
⁽²⁾

The thermodynamic reduction potential of the β -PdS₂ monolayer reduction potential (ϕ^{re}) and oxidation potential (ϕ^{ox}) could be calculated as follows

$$\begin{split} \varphi^{re} &= -[\Delta_{f}G^{0}(Pd) + 2\Delta_{f}G^{0}(H_{2}S) - \Delta_{f}G^{0}(PdS_{2}) - 2\Delta_{f}G^{0}(H_{2})]/4eF + \varphi(H^{+}/H_{2}) \quad (3) \\ \varphi^{ox} &= [2\Delta_{f}G^{0}(S) + \Delta_{f}G^{0}(PdO) + \Delta_{f}G^{0}(H_{2}) - \Delta_{f}G^{0}(PdS_{2}) - 2\Delta_{f}G^{0}(H_{2}O)]/4eF + \varphi(H^{+}/H_{2}) \\ ...(4) \end{split}$$

where $\Delta_f G^0(Pd)$, $\Delta_f G^0(H_2S)$, $\Delta_f G^0(PdS_2)$, $\Delta_f G^0(S)$, $\Delta_f G^0(PdO)$ and $\Delta_f G^0(H_2)$ mean the standard molar Gibbs energy of formation of Pd, H₂S, PdS₂, S, PdO, $\Delta_f G^0(H_2O)$, and H₂. As listed in Table S3, the $\Delta_f G^0(Pd)$, $\Delta_f G^0(H_2S)$, $\Delta_f G^0(S)$, $\Delta_f G^0(PdO)$ and $\Delta_f G^0(H_2)$ could be found in the handbook². The standard molar Gibbs energy of formation of β -PdS₂ monolayer is approximated by its formation energy (*E*_f), which is defined as follows:

$$E_{f} = E_{PdS_{2}} - E_{Pd} - 2E_{S}/3$$
(5)

where E_{PdS_2} means the total energy of β -PdS₂ unit cell, while E_{Pd} , and E_S separately stand for the energy of Pd, and S in their stable phases. E_{Pd} , and E_S are -3442.444, and -274.251 eV/atom, respectively. The total energy of β -PdS₂ unit cell (E_{PdS_2}) is -4002.969 eV/unit. Therefore, the formation energy of β -PdS₂ monolayer (E_f) is -4.0 eV/aotm. (H^+/H_2) is 0 V relative to the normal hydrogen electrode (NHE) potential. F and e represent the Faraday constant and the elemental charge, respectively. After plugging the relevant values into Equation 3-4, ϕ^{re} , ϕ^{ox} is obtained as -1.707 V and 3.07 V (relative to NHE). The ϕ^{re} is smaller than 0 V, while the ϕ^{ox} is larger than 1.23 V, indicating the strong resistance to photoinduced corrosion of β -PdS₂ monolayer.

Molecular Formula	$\Delta_{\rm f} {\rm G}^0$	Molecular Formula	$\Delta_{\rm f}G^0$
Pd	339.7	H ₂ O	-237.1
H ₂ S	-33.4	S	236.7
H ₂	0	PdO	325.9

Table S3 Standard Molar Gibbs Energy of Formation ($\Delta_f G^0$) at 298.15 K in kJ/mol.

Adsorption/Intercalation Energies

Table S4. Binding energies of adsorption, intercalation and adspt+intclt models for (001) surface of β -PdS₂.

	Binding Energy per H ₂ O Molecules					
H ₂ O Molecules	(eV)					
	Adsorption	Intercalation	Adspt+Intclt			
1	-0.059	-0.047	-			
2	-0.34	-0.35	-			
3	-0.82	-0.81	-			
4	-1.40	-1.43	-			
8	-	-	-2.82			

Gibbs Free energy Calculations

••

To further clarify the thermodynamics of water redox reactions on the β -PdS₂, we calculate the Gibbs free energy change of HER and OER at pH 0 to 7, with and without the effect of light irradiation. The hydrogen electrode model developed by Nørskov et al. is adopted to calculate the Gibbs free energy, as follows:

$$\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S + \Delta G_{U} + \Delta G_{pH}$$
(6)

where ΔE represents the DFT computed total energy difference, and ΔE_{ZPE} and T ΔS are the zeropoint energy difference and the entropy, respectively ΔG_U ($\Delta G_U = -eU$) denotes the extra potential bias provided by an electron in the electrode, where U is the electrode potential relative to the standard hydrogen electrode (SHE). ΔG_{pH} represents the contribution of Gibbs free energy at different pH concentrations.

The HER half-reaction can be decomposed into a two-electron step, and the reaction equation can be written as:

$$\mathbf{H}^{+} + \mathbf{e}^{-} + \ast \rightleftharpoons \ast \mathbf{H} \tag{7}$$

$$* H + H^+ + e^- \rightleftharpoons H_2 \tag{8}$$

The OER half-reaction can be decomposed into a four-electron step, and the reaction equation can be written as:

$$H_2O(1) + * \rightleftharpoons *OH + H^+ + e^-$$
 (9)

$$* 0H \rightleftharpoons * 0 + H^+ + e^-$$
(10)

$$0 * + H_2 0 \rightleftharpoons 00H * + H^+ + e^-$$
 (11)

$$* 00H \rightleftharpoons * +0_2(g) + e^-$$
(12)

Gibbs free energy changes ΔG for each intermediate and each step in the OER process were calculated using the following equations

$$\Delta G_{OH} = G(* OH) + G(H^{+} + e^{-}) - G(*) - G(H_2O)$$

$$\Delta G_0 = G(* O) + 2G(H^{+} + e^{-}) - G(*) - G(H_2O)$$

$$\Delta G_{OOH} = G(* OOH) + 3G(H^{+} + e^{-}) - G(*) - 2G(H_2O)$$

Then, considering the effect of electrode potential (U) and pH, the free energy change for OER electrochemical steps can be expressed as:

$$\Delta G_{1} = \Delta G_{OH} = \Delta G_{OH} = G(* OH) + G(H^{+} + e^{-}) - G(*) - G(H_{2}O) - \Delta G_{U} - \Delta G_{pH}$$

$$\Delta G_{2} = \Delta G_{O} - \Delta G_{OH} = G(* O) + G(H^{+} + e^{-}) - G(* OH) - \Delta G_{U} - \Delta G_{pH}$$

$$\Delta G_{3} = \Delta G_{OOH} - \Delta G_{O} = G(* OOH) + G(H^{+} + e^{-}) - G(* O) - G(H_{2}O) - \Delta G_{U} - \Delta G_{pH}$$

$$\Delta G_{4} = 4.92 [eV] + [G(*) + 2G(H_{2}O)] - [G(* OOH) + 3G(H^{+} + e^{-})] - [\Delta G_{U} + \Delta G_{pH}]$$

Adsorbents	Ezpe (eV)	-TS (eV)	E (eV)	G (eV)
H ₂	0.31	-0.41	-31.7593720	-31.8593720
H ₂ O	0.62	-0.67	-467.3122953	-467.362295
*	-	-	-16018.508215	-16018.508215
*0	0.09	-0.00	-16452.228387	-16452.138387
*OH	0.36	-0.00	-16468.11140343	-16467.751403
*ООН	0.46	-0.21	-16900.195346	-16899.945346
*H	0.23	-0.00	-16033.713824	-16033.483824

Table S5. Zero-pint energy correction (E_{ZPE}), entropy contribution (TS, T=298.15K), total energy (E), and the Gibbs free energy (G) of molecules and adsorbents on β -PdS₂ monolayer.

Fig. S5 Free energy profile on β -PdS₂ monolayer for HER at (a) pH=1 (b) pH = 2 (c) pH=4 (d) pH=5 (e) pH=6.

Fig. S6 Free energy profile on β -PdS₂ monolayer for OER at (a) pH=1 (b) pH = 2 (c) pH=4 (d) pH=5 (e) pH=6.

Solar to Hydrogen Efficiency

Table S6. Calculated the Over-Potential for HER $\chi(H_2)$ and OER $\chi(O_2)$, *E* is the energy of photons of β -PdS₂ monolayer with the function of pH. The energy conversion efficiency of light absorption (η_{abs}), carrier utilization (η_{cu}), and STH (η_{STH}).

pH	$\chi(H_2) (eV)$	$\chi(0_2) (eV)$	E (eV)	η_{abs} (%)	η _{cu} (%)	η _{STH} (%)
0	0.45	0.42	2.28	32.35	35.28	11.41
1	0.39	0.48	2.22	32.35	39.17	12.67
2	0.33	0.54	2.16	32.35	43.08	13.93
3	0.27	0.6	2.10	32.35	47.58	15.39
4	0.21	0.65	2.10	32.35	47.58	15.39
5	0.16	0.715	2.14	32.35	44.39	14.36
6	0.098	0.774	2.20	32.35	40.47	13.09
7	0.039	0.833	2.26	32.35	36.57	11.83

The STH efficiency is considered under the situation of 100% efficiency of the catalytic reaction.² $^{3}\eta_{\text{STH}}$ is estimated by $\eta_{\text{STH}} = \eta_{abs} \times \eta_{cu}$ where η_{abs} is the efficiency of light absorption and η_{cu} is carrier utilization. The efficiency of light absorption (η_{abs}) is defined as

$$\eta_{abs} = \frac{\int_{E_g}^{\infty} P(\hbar\omega) d(\hbar\omega)}{\int_0^{\infty} P(\hbar\omega) d(\hbar\omega)}$$

where $P(\hbar\omega)$ is the AM1.5G solar energy flux at the photon energy $\hbar\omega$ and E_g is the band gap of semiconductors.

The efficiency of carrier utilization as (η_{cu}) is defined as

••

$$\eta_{cu} = \frac{\Delta G \int_{E}^{\infty} \frac{P(\hbar\omega)}{\hbar\omega} d(\hbar\omega)}{\int_{E_{g}}^{\infty} P(\hbar\omega) d(\hbar\omega)}$$

Where ΔG is the potential difference for water splitting (1.23 eV) and *E* is the energy of photons used for water splitting. *E* is determined by

$$E = \begin{cases} E_{g}, (\chi(H_{2}) \ge 0.2, \chi(O_{2}) \ge 0.6) \\ E_{g} + 0.2 - c, (\chi(H_{2}) < 0.2, \chi(O_{2}) \ge 0.6) \\ E_{g} + 0.6 - \chi(O_{2}), (\chi(H_{2}) \ge 0.2, \chi(O_{2}) < 0.6) \\ E_{g} + 0.8 - \chi(H_{2}) - \chi(O_{2}), (\chi(H_{2}) < 0.2, \chi(O_{2}) < 0.6) \end{cases}$$

where $\chi(H_2)$ is overpotential for HER, and $\chi(O_2)$ is overpotential for oxygen evolution reaction (OER). Considering the previous experiments and theoretical calculations reports, the required overpotentials for HER and OER are assumed to be 0.2 and 0.6 eV, respectively^{4, 5}.

Fig. S7 Atomic configurations of (a) β -PdTe₂/XTe₂ (X=Mo,W) (b) β -PdTe₂/InX (X=S,Se) (c) β -PdTe₂/Ga₂STe (d) β -PdTe₂/RhTeCl and (e) β -PdTe₂/T-Te heterostructures.

Fig. S8 The calculated band structure of monolayer (a) $MoTe_2$ (b) WTe_2 (c) InTe (d) InSe (e) Ga_2STe using HSE06 functional.

Table S7: Calculated lattice parameters, and bandgap (E_g) values for optimized TMDs monolayers and lattice mismatch, interlayer distance (d) and binding energy E_b of β -PdTe₂ with TMDs heterostructure.

TMDs	Lattice Parameters		E _g (eV)	СВМ	VBM	Lattice Mismatch (%)	d(Å)	E _b (meV/
	a(Å)	b(Å)						atom)
MoTe ₂	3.55	6.16	1.51	-3.86	-5.37	5.44	2.73	330
	$(3.54)^{6}$	$(6.14)^{6}$	$(1.50)^{6}$					
WTe ₂	3.56	6.16	1.49	-3.75	-5.24	5.58	2.71	370
	$(3.55)^{6}$	$(6.15)^{6}$	$(1.47)^{6}$					
Ga ₂ STe	3.85	6.72	1.51	-4.25	-5.76	2.25	3.01	58
	$(3.89)^7$		$(1.61)^7$	(-	$(-5.90)^7$			
				$(4.29)^{7}$				
InSe	4.08	7.07	2.10	-4.37	-6.55	3.88	3.14	9
	$(4.08)^7$		$(2.19)^7$	(-	$(-6.46)^7$			
				$(4.27)^{7}$				
InTe	4.38	7.58	2.00	-4.05	-6.05	4.89	2.97	20
	$(4.38)^7$		$(2.01)^7$					
RhTeCl	3.70	6.72	2.23	-4.27	-6.50	4.15	2.76	60
	$(3.67)^{8}$	$(6.65)^{8}$	$(2.49)^{8}$	(-	$(-6.50)^{8}$			
				$(4.01)^{8}$				
T-Te	4.25	7.36	1.01	-4.26	-5.27	3.96	2.89	9
	$(4.23)^9$		$(1.11)^9$					
β -PdS ₂	3.49	4.32	2.10	-3.98	-6.09	12.0	2.60	53

System	$\Delta E_{c} (eV)$	PCE%
β-PdTe ₂ / MoTe ₂	0.11	20.59
β-PdTe ₂ /WTe ₂	0.001	23.14
β -PdTe ₂ /Ga ₂ STe	0.50	11.47
β-PdTe ₂ /InSe	0.63	8.42
β -PdTe ₂ /InTe	0.31	15.92
β-PdTe ₂ /RhTeCl	0.52	10.99
β-PdTe ₂ /T-Te	0.52	10.99
β -PdTe ₂ / β -PdS ₂	0.23	17.79

Table S8. The conduction band offsets (ΔE_c), and percentage PCEs of the heterostructure of the monolayer of β -PdTe₂ with different TMDs

References

- 1. S. Chen and L.-W. Wang, *Chemistry of Materials*, 2012, 24, 3659-3666.
- Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske and M. Sunkara, *Journal of Materials Research*, 2010, 25, 3.
- 3. C.-F. Fu, J. Sun, Q. Luo, X. Li, W. Hu and J. Yang, *Nano letters*, 2018, **18**, 6312-6317.
- 4. C. C. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, *Journal of the American Chemical Society*, 2013, **135**, 16977-16987.
- 5. Y. Zheng, Y. Jiao, M. Jaroniec and S. Z. Qiao, *Angewandte Chemie International Edition*, 2015, **54**, 52-65.
- 6. H. Huang, X. Fan, D. J. Singh, H. Chen, Q. Jiang and W. Zheng, *Physical Chemistry Chemical Physics*, 2016, **18**, 4086-4094.
- 7. A. Huang, W. Shi and Z. Wang, *The Journal of Physical Chemistry C*, 2019, **123**, 11388-11396.
- 8. H. Yang, Y. Ma, Y. Liang, B. Huang and Y. Dai, *ACS applied materials & interfaces*, 2019, **11**, 37901-37907.
- 9. J. Singh, P. Jamdagni, M. Jakhar and A. Kumar, *Physical Chemistry Chemical Physics*, 2020, **22**, 5749-5755.