Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

Microenvironments of Cu Catalyst in Zero-gap Membrane Electrode Assembly for Efficient CO₂ Electrolysis to C₂₊ Products

Woong Choi[‡], Yongjun Choi[‡], Eunsuh Choi, Hyewon Yun, Wonsang Jung, Woong Hee Lee,

Hyung-Suk Oh, Da Hye Won, Jonggeol Na,* and Yun Jeong Hwang*

Supplemental Method

Calculation of Faradaic efficiency

Partial currnet density of each product $(i_{product})$ was calculated by substituting the volume concentration $(c_{product})$ of each gaseous and liquid product, which were obtained from gas chromatograms and NMR, into the following equation.

$$i_{product} = c_{product} \times n_{product} \times \frac{vFp_0}{RT}$$

where $n_{product}$ is number of electrons to yield each product from eCO₂RR, v, F, p0, R, and T represent flow rate, Faradaic constant, gas pressure in MEA cell, ideal gas constant, and temperature, respectively.

In addition, Faradaic efficiency for each product ($FE_{product}$) was calculated from the ratio between total current and partial current of each product as follow.

$$FE_{product} = \frac{l_{product}}{l_{total}} \times 100$$

Where itotal means measured total current density

Calculation of energy efficiency (EE)

EEs for total eCO₂RR and C₂₊ production for each catalyst were calculated based on the recorded applied cell potential (E) and FEs for each product ($^{FE}_{i}$) using following equations.

$$EE_i = \frac{E_i^o}{E} \times FE_i$$

$$EE_{total \ CO2RR} = \sum_{i} EE_{i}$$

Where E_i^o represents standard reduction potential of each product from CO₂ coupling with standard reduction potential of oxygen evolution reaction. $E_{C2+product}$ contains ethylene, ethanol, acetate, and propanol.

Electrochemical active surface area (ECSA) measurement

The ECSA of each Cu catalyst was measured by under-potential deposition (UPD) of Pb referring previous report.¹ Each Cu-0, pCu, and Cu-5 electrode was fabricated by a loading 0.5 mg cm⁻² on carbon paper (Sigracet 39BB) with 1 cm² electrode area. For the electrochemical measuremenets, 3 M Ag/AgCl and Pt plates were employed as a reference and counter electrode, respectively. Before the Pb-UPD, Cu catalyst electrodes were reduced at -3.0 V (vs. 3 M Ag/AgCl) in N₂ bubbled 0.1 M HClO₄ solution for 10 min. Subsequently, a cyclovoltametry from -0.1 V to -0.5 V with 10 mV s⁻¹ scan rate was performed in N₂ bubbled 0.001 M Pb(ClO₄)₂ and 0.1 M HClO₄ aqueous electrolyte

Computational fluid dynamics simulation

In order to theoretically confirm how the device performance (e.g., Faraday efficiency) changes according to the thickness of the catalyst layer, we developed a device model that considers various transport phenomena such as diffusion and migration through potential fields. We employed finite-element methods (FEM) based computational fluid dynamics (CFD) with commercial software COMSOL Multiphysics® version 5.6 (https://www.comsol.com/) with 'Fuel cell & electrolyzer' module under 16 cores of Intel Xeon Gold 6242 (2.8 GHz) processors. Multifrontal massively parallel sparse direct solver (MUMPS) was used and multi-

step approach, which varies applied cell potential from 2.0 V to 4.0 V (or target potential) with 0.01 V step-size, was also used. Important governing equations are (1) solid phase electric potential,

$$\nabla \cdot i_s = -\sum_k a_{s,k} i_k$$
$$i_s = -\sigma^{eff}_s \nabla \phi_s$$

where i_s is electrode current density, i_k is partial current density of reaction k, $a_{s,k}$ is specific surface area for reaction k assumed same for every charge transfer reactions, σ_s is electronic conductivity, ϕ_s is electronic potential for solid phase. (2) Liquid phase electric potential is connected to solid phase electric potential as,

$$\nabla \cdot i_L = - \nabla \cdot i_s$$

where i_L is electrolyte current density. Mass fraction of gas species can be expressed as,

$$\nabla \cdot n_{i} = R_{Phase \ Transfer,i} + R_{Bulk,i} + R_{Charge \ Transfer,i}$$
$$n_{i} = -\rho_{G} D_{i}^{eff} \nabla \omega_{i} - \rho_{G} D_{i}^{eff} \omega \frac{\nabla M_{n}}{M} + \rho_{i} u_{G}$$
$$\sum_{i} \omega_{i} = 1$$

where n_i is mass flux of gas species i, $R_{Phase Transfer,i}$ is phase transfer rate for species i, $R_{Bulk,i}$ is bulk reaction rate for species i, $R_{Charge Transfer,i}$ is charge transfer reaction rate for species i, D_i is diffusivity of species i, ρ is mass density, ω_i is mass fraction of species i, and u is mass-averaged fluid velocity. (3) Ionic species mass fraction is almost same as neutral species but we should include migration through electric field expressed as,

$$\nabla \cdot n_{j} = R_{Phase \ Transfer,j} + R_{Bulk,j} + R_{Charge \ Transfer,j}$$
$$n_{j} = -\rho_{L} D^{eff}_{\ j} \nabla \omega_{j} + \frac{\rho_{L} D^{eff}_{\ j} \omega_{j} z_{j} F}{RT} \nabla \phi_{L}$$
$$\sum_{j} \frac{Z_{j} \omega_{j}}{M_{j}} = 0$$

where n_j is mass flux of ionic species j, z_j is charge of species j, ξ is electro-osmotic coefficient, and superscript *eff* means effective property. (4) Liquid water mass fraction can be expressed as

$$n_{H_{2}0} = -\rho_L D_{H_{2}0}^{eff} \nabla \omega_{H_{2}0} + \sum_j \frac{\xi^{eff} n_j}{M_j}$$

, and transport mechanisms are governed by Maxwell-Stefan diffusion equation, diffusioneffective diffusivity model for porous media is governed by Bruggeman model, and migration in electric field is governed by Nernst-Einstein relation. We have to consider various charge transfer reactions that can cover HER, C_1 , and C_2 to extract the trend of C_{2+} FE. Thus, we employed one charge transfer reactions (OER on IrO₂) at the anode and four charge transfer reactions (reduction reactions to produce H₂, CO, C_2H_4 , C_2H_5OH on the proposed Cu-5 catalyst) at the cathode based on the Butler-Volmer equation,

$$i_{k} = i_{o,k} \prod_{j} \left(\frac{c_{j}}{c^{ref}} \right)^{\gamma_{j,k}} \cdot \exp\left(-\frac{\alpha_{c,k}F}{RT} \eta_{k} \right)$$
$$\eta_{k} = \left(\phi_{s} - \phi_{L} \right) - \left(U_{k}^{o} - \frac{(\ln 10) \times RT}{F} pH \right)$$

where i_o is exchange current density, c_j is activity of species j, γ_k is reaction order with respect to species j for reaction k, $\alpha_{c,k}$ is cathodic transfer coefficient of reaction k, η_k is surface overpotential for reaction k, and U_k^o is reference potential of reaction k. The list of reactions are

Product	Reactions
Anode	
O ₂	$4\text{OH}^{-} \rightarrow \text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}^{-}$
Cathode	
H_2	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$
CO	$CO_2 + H_2O + 2e^- \rightarrow CO + 2OH^-$
C_2H_4	$2\mathrm{CO}_2 + 8\mathrm{H}_2\mathrm{O} + 12\mathrm{e}^{-} \rightarrow \mathrm{C}_2\mathrm{H}_4 + 12\mathrm{OH}^{-}$
C ₂ H ₅ OH	$2\text{CO}_2 + 9\text{H}_2\text{O} + 12\text{e}^- \rightarrow \text{C}_2\text{H}_5\text{OH} + 12\text{OH}^-$

where reference potential, exchange current density, charge transfer coefficient, and chemical activity of each reaction are shown in Table S1. Reference potential and chemical activity of each reaction are from Weng et. al.², and exchange current density and charge transfer coefficient are fitted by the partial current density of electron transfer limited H₂, CO, C₂H₄, and liquid products (represented to C₂H₅OH) production reactions measured at -3.00 to -4.00 V (vs. RHE) Cu-5 where experimental data is Fig. 2c and fitting results are shown in Fig. 3b. Our target objective function is mean squared error between experimental FE and simulated FE, and we tried to minimize it. Parameter estimated proposed model was able to predict the results of the FE and total current density according to the applied cell potential (E_{cell}).

For ions in electrolyte and chemical species, H^+ , HCO_3^- , CO_3^{2-} , OH^- , CO_2 , CO, C_2H_4 , H_2 , O_2 , H_2O , and C_2H_5OH were defined as mixture fluid material with each diffusion coefficient. In the case of homogeneous reactions, we considered volume reactions of carbonate equilibria³⁻⁵ and water self-ionization^{3,6} for rigorous dynamic responses of electrochemical reaction rates and transport effects of various species simultaneously. The equations and all physical properties and parameters used in the model are summarized in Supplementary Table 1.

carbonate equilibria - 1	$CO_2(aq) + OH^-(aq) \rightleftharpoons HCO_3^-(aq)$
carbonate equilibria - 2	$HCO_3^{-}(aq) + OH^{-}(aq) \rightleftharpoons CO_3^{2-}(aq) + H_2O(l)$
water self-ionization	$H^+(aq) + OH^-(aq) \rightleftharpoons H_2O(l)$

In Fig. 3a, a schematic of the simulation domain boundary used for the thickness effect study is shown. A four-layered structure consisted of the anode (Pt-Ti mesh, 270 μ m), the membrane (70 μ m), catalyst (we set the thickness of catalyst layer as variable), and the cathode (carbon paper (Sigracet 39bb), 300 μ m) were considered and all domain were fully defined in CFD simulation. Particularly, boundary conditions between bulk electrolyte solution (0.1 M KHCO₃) and anode (Fig. 3a, boundary (I)) were

$c_i = 0$	Zero concentration of gas species
$c_{i \neq c_0} = 0.1 M KHCO_2$ solution	Concentration of other species are calculated by
<i>j≇c0</i> ₂	fleshly prepared 0.1 M KHCO ₃ solution (pH \approx 8.34)
$\phi_s = E_{cell}$	Applied cell potential (we can vary this)

Boundary conditions of the anode-membrane and membrane-catalyst (Fig. 3a, boundary (II and III)) were

n_i	Zero flux for gaseous species	

Boundary conditions of the catalyst-cathode (Fig. 3a, boundary (IV)) were

 n_i

Zero flux for ionic species

Finally, boundary conditions of cathode-humidified C_02 gas chamber Fig. 3a, boundary (V)) were

y_{H_20} $0.99 \times \frac{P_{sat}}{P_{sat}}$	
$\phi_s = 0$ Arbitrary reference potential	

	$U_{k}^{o}(\mathbf{V})$	$i_{o,k} (\text{mA/cm}^2)$	$\alpha_{a/c,k}$	$\prod_{j} \left(\frac{c_{j}}{c^{ref}_{j}} \right)^{\gamma_{j,k}}$					
OER on IrO ₂									
O2 (acid)	1.23	$1.2 \times 10^{-8} exp\left(-\frac{0.01[eV]pH}{k_BT}\right)$	1.5	$a_{w}^{1.6}$					
HER & CO2	HER & CO2R on Cu-5								
H_2	0	$7 \times 10^{-11} exp\left(-\frac{0.01[eV]pH}{k_BT}\right)$	0.4	a_w^2					
СО	-0.11	1.3×10^{-2}	0.14	$a_w \left(\frac{[CO_2]}{1M}\right)^{1.50}$					
C_2H_4	0.07	9.5×10^{-6}	0.24	$a_w^3 \left(\frac{[CO_2]}{1M} \right)^{1.36}$					
C ₂ H ₅ OH	0.08	1.2×10^{-4}	0.17	$a_w^3 \left(\frac{[CO_2]}{1M} \right)^{0.96}$					

 Table S1 Rate parameters for charge transfer reactions

Input parameter Reference		Description	Value	
L _{anode} / m	experiment	The thickness of the anode Pt-Ti mesh layer	2.7×10 ⁻⁴	
L _{membrane} / m	experiment	The thickness of the membrane layer	7.0×10 ⁻⁵	
L _{catalyst} / m	variable	The thickness of the catalyst layer	-	
L _{cathode} / m	experiment	The thickness of the cathod carbon paper layer	3.0×10 ⁻⁴	
D _{particle} / m	experiment	The diameter of pseudo-particle of catalyst layer	2.85×10-7	
$\epsilon_{catal, cathode}$	experiment	Pseudo-porosity of catalyst layer and cathode	0.627	
E _{anode}	7	Pseudo-porosity of anode Pt-Ti mesh	0.8	
$\sigma_{ m catal}$ / S m ⁻¹	7	Electronic conductivity in catalyst layer	220	
$\sigma_{ m cathode}$ / S m ⁻¹	7	Electronic conductivity in cathode diffusion medium (carbon paper)	100	
$a_{V / \mathrm{m}^{-1}}$	experiment	Active specific surface area	1.958×10 ⁸	
$[CO_2]_{bulk-anode} / M$		25 °C 0.1 M KHCO3 solution	0	
$[H^+]_{bulk-anode} / M$		25 °C 0.1 M KHCO3 solution	4.57×10-9	
[HCO3-]bulk-anode / M		25 °C 0.1 M KHCO3 solution	9.90×10 ⁻²	
[CO32-]bulk-anode / M		25 °C 0.1 M KHCO3 solution	1.01×10-3	
[OH ⁻] _{bulk-anode} / M		25 °C 0.1 M KHCO3 solution	2.19×10 ⁻⁶	
\mathbf{k}_1	3,4	Forward kinetics coefficient of carbonate equilibria - 1	5.93×10 ³	
k.1	3,4	Reverse kinetics coefficient of carbonate equilibria - 1	1.36×10 ⁻⁴	
k ₂	3,4	Forward kinetics coefficient of carbonate equilibria - 2	1.00×10 ⁸	
k.2	3,4	Reverse kinetics coefficient of carbonate equilibria - 2	2.15×10 ⁴	
k _w ^{3,6} Forward kinetics coefficient of water self		Forward kinetics coefficient of water self-ionization	1.40×10 ¹¹	
k _{-w}	3,6	Reverse kinetics coefficient of water self-ionization	1.40×10 ⁻³	

 Table S2 Physical properties and model parameters for CFD simulations.

Fig. S1 (a) Schematic image of MEA electrolyzer configuration. (b) Images of each compartments of MEA electrolyzer.

Fig. S2 SEM, TEM, and HRTEM images of Cu nanoparticles after (a,e,i) 0 h, (b,f,j) 1 h, (c,g,k) 5 h, and (d,h,k) 12 h KOH treatments. Scale bars represent (a,b,c,d) 500 nm, (e,f,g,h) 50 nm, and (i,j,k,l) 10 nm.

Fig. S3 (a,b,c) HRTEM images of (a) Cu-0, (b) pCu, and (c) Cu-5. The bars represented 10 nm. (d,e,f) FFT patterns of (d) Cu-0, (e) pCu, and (f) Cu-5.

Fig. S4 (a) H_2 , (b) CO, and (c) C_2H_4 FEs of Cu-0 (black), pCu (orange), and Cu-5 (dark cyan) at each applied cell potential. Error bars represent standard deviations of 3-5 times individual experiments.

Fig. S5 Representative ¹H NMR spectra of the analyte and the captured CO_2 outflow using the cold trap, respectively after the eCO_2RR with the MEA cell. TMS was used as an internal standard.

Fig. S6 In-situ XANES spectra of Cu-5 catalyst in MEA cell during eCO_2RR at stepwise applied cell potential. All reaction conditions were identical to a general eCO_2RR in MEA cell. Spectrum were obtained after 10 min operation at each applied potential, and the applied potential was switched after 30 min.

Fig. S7 (a) SEM, (b) TEM, and (c) HRTEM images of Cu-5 catalyst after the stepwised eCO₂RR in MEA cell. The yellow dash lines in HRTEM image show the grain boundaries of small Cu domains. The bars represent (a,b) 500 nm and (c) 5 nm, respectively.

Fig. S8 Cyclo-voltametry (CV) curves of Cu-0 (black), pCu (orange), and Cu-5 (dark cyan) for electrochemical active surface area (ECSA) measuremts. CV curves were obtained from -0.1 V to -0.5 V under O_2 -free 0.001 M Pb(ClO₄)₂ and 0.1 M HClO₄ aqueous electrolyte and 10 mV s-1 scan rate.

Fig. S9 Computational results of the catalyst thickness effect for extrinsic properties (a) pH, (b) water activity, (c) bicarbonate ion concentration, and (d) carbonate ion concentration.

Fig. S10 (a) The required applied cell potential and (b) the local cathode potential (vs. RHE) to maintain fixed current density as 500 mA/cm² at different thickness cathode catalyst layer.

Fig. S11 Plots of (a) partial current density and (b) cathode kinetic overpotential at the fixed current density (500 mA/cm²) as a function of catalyst layer thickness.

Fig. S12 (a,b,c) Cross-sectional SEM images of (a) Cu-5-1, (b) Cu-5-3 and (c) Cu-5-10. The bars represent (a) 4 μ m, (b) 20 μ m, and (c) 50 μ m, respectively. (d,e,f) SEM images of (d) Cu-5-1, (e) Cu-5-3 and (f) Cu-5-10. The bars represent (a) 4 μ m, (b) 20 μ m, (c) 40 μ m, and (d,e,f) 500 nm, respectively.

Fig. S13 XRD spectra comparison of (a) cCu-5-1, (b) cCu-5-3, and (c) cCu-5-10 before and after the KOH treatment and the eCO_2RR .

Fig. S14 FEs of gaseous products and total current densities of (a) Cu-5-1, (b) Cu-5-3, and (c) Cu-5-10 depending on the applied cell voltages.

Fig. S15 C_2H_4 FE and applied cell potential of Cu-5-3 catalyst electrode fixed current density of 300 mA cm⁻² during 20 h operation. Cu-5-3 catalyst was prepared by overlaying carbon black (ketjen black 600jd) and graphite powder adlayers to prevent a flooding and hydrophilic catalyst surface changes.

Fig. S16 (a) TEM, (b) HRTEM, and (c) XRD spectrum of Cu-5 catalyst after 13 h stability test in the MEA cell at 300 mA cm⁻². The scale bars repsent (a) 50 nm and (b) 10 nm, respectively.

			FE(%)		C₂+ partial				
#	Catalyst	H ₂	C ₂₊	Voltage	Current density	lonomer	Membrane	Anolyte	Ref
			chemicals		(-mA cm*)				
	Commercial Cu 25nm	14.7	67.3	-3.85 V (cell voltage)	336.5	Sustainion	AEM	0.1 M KHCO3	This work
1	Cu ₂ O	60	15	2.00 V (cell voltage)	0.6	_	AEM	_	13
2	Cu ₂ O	_	17	2.25 V (cell voltage)	0.68	_	AEM	H ₂ O	14
3	Cu-CNF	_	52	2.11 V (cell voltage)	38.5	Nafion	PEM	H ₂ O	15
4	Porous PTFE + Cu(sputtering) + Carbon NPs + Graphite	<5	79	-4.20 V (cell voltage)	158	_	AEM	0.1 M KHCO3	16
5	Porous PTFE + CIBH	_	50	-3.90 V (cell voltage)	347.2	CIBH	AEM	0.1 M KHCO3	17
6	Porous PTFE + modified Cu	_	60	3.62 V (cell voltage)	72	_	AEM	0.1 M KHCO3	18
7	Porous PTFE + Cu(sputtering) + CTPI	_	69	-4.40 V (cell voltage)	303.6	TP/SCC	AEM	0.1 M KHCO3	19
8	Cu	<2	<2	-3.00 V (vs. 3 M Ag/AgCl	<2.2	Sustainion	AEM	10 mM KHCO ₃	20
9	Cu	89	11.8	-1.70 V (vs. SCE)	3.1	_	PEM	0.5 M K ₂ SO ₄	21
10	Cu-SPE	-	10	-2.00 V (vs. SCE)	0.1~0.8	-	PEM	1 mM H ₂ SO ₄	22
11	Cu film	NC.	45.5	-0.60 V (vs. RHE)	30.7	_	Polymers	1 M KOH	23
12	Cu-SiO _x	_	65 (C ₂ H ₄)	-4.1 V (cell voltage)	215	Polymeric binder	AEM	0.1 M KHCO3	24
13	Cu-KOH	_	78.7	-3.25 V (cell voltage)	221	Sustainion	AEM	1 M KOH	25
14	Defect-rich Cu	_	60 (ethanol, n- propanol)	-3.5 V (cell voltage)	120	Sustainion	AEM	0.1 M KHCO3	26
15	Cu cube	10	38.5	-3.75 V (cell potential)	90	Sustainion	AEM	0.1 M KHCO3	27
16	Sputtered Cu	5	85	-2.4 V (cell potential)	102	—	AEM	0.1 M KHCO3	28

Table S3 Summary and comparison of the eCO_2RR performances in the catholyte-free MEAcell for C_{2+} chemicals production

Fig. S17 Summary and comparison of eCO_2RR performances showing the partial current densities of the C_{2+} chemicals (x-axis) and their FEs (y-axis) using Cu-based catalysts in the zero-gap and catholyte-free MEA cell.

Fig. S18 Total eCO_2RR (orange) and C_{2+} production (green) energy efficiencies of Cu-0, pCu, Cu-5-1, Cu-5-3, and Cu-5-10 at fixed current density of 500 mA cm⁻².

Supplemental References

- O. A. Baturina, Q. Lu, M. A. Padilla, L. Xin, W. Li, A. Serov, K. Artyushkova, P. Atanassov, F. Xu, A. Epshteyn, T. Brintlinger, M. Schuette and G. E. Collins, *ACS Catal.*, 2014, 4, 3682–3695.
- 2 L.-C. Weng, A. T. Bell and A. Z. Weber, *Energy Environ. Sci.*, 2020, **12**, 3592–3606.
- 3 D. L. T. Nguyen, C. W. Lee, J. Na, M. C. Kim, N. D. K. Tu, S. Y. Lee, Y. J. Sa, D. H. Won, H. S. Oh, H. Kim, B. K. Min, S. S. Han, U. Lee and Y. J. Hwang, *ACS Catal.*, 2020, 10, 3222–3231.
- 4 Y. Lum, B. Yue, P. Lobaccaro, A. T. Bell and J. W. Ager, *J. Phys. Chem. C*, 2017, **121**, 14191–14203.
- 5 H. Erying and D. Henderson, *Theoretical Chemistry: Advances and Perspectives*, Academic Press, USA, 1975, pp. 177-234.
- 6 B. P. Sullivan, K. Krist and H. E. Guard, *Electrochemical and electrocatalytic reactions of carbon dioxide*, Elsevier Science, Netherlands, 1992.
- 7 L. C. Weng, A. T. Bell and A. Z. Weber, *Energy Environ. Sci.*, 2019, **12**, 1950–1968.
- 8 H. C. Brinkman, J. Chem. Phys., 1952, 20, 571.
- 9 B. Ghanbarian, A. G. Hunt, R. P. Ewing and M. Sahimi, SSSA, 2013, 77, 1461-1477.
- 10 S. Ergun, Chem. Eng. Prog., 1952, 48, 89-94.
- 11 N. Gupta., M. Gattrell and B. MacDougall, J. Appl. Electrochem, 2006, 36, 161-172.
- 12 E. L. Cussler, *Diffusion: mass transfer in fluid systems*, Cambridge University Press, England, 2009.
- 13 L. M. Aeshala, R. G. Uppaluri and A. Verma, J. CO2 Util., 2013, 3-4, 49-55.
- 14 L. M. Aeshala, R. Uppaluri and A. Verma, *Phys. Chem. Chem. Phys.*, 2014, 16, 17588–17594.
- 15 N. Gutiérrez-Guerra, L. Moreno-López, J. C. Serrano-Ruiz, J. L. Valverde and A. de Lucas-Consuegra, *Appl. Catal. B Environ.*, 2016, **188**, 272–282.
- 16 C. M. Gabardo, C. P. O'Brien, J. P. Edwards, C. McCallum, Y. Xu, C. T. Dinh, J. Li, E. H. Sargent and D. Sinton, *Joule*, 2019, **3**, 2777–2791.
- 17 F. P. García de Arquer, C. T. Dinh, A. Ozden, J. Wicks, C. McCallum, A. R. Kirmani, D. H. Nam, C. Gabardo, A. Seifitokaldani, X. Wang, Y. C. Li, F. Li, J. Edwards, L. J. Richter, S. J. Thorpe, D. Sinton and E. H. Sargent, *Science*, 2020, **367**, 661–666.
- 18 F. Li, A. Thevenon, A. Rosas-hernández, Z. Wang, Y. Li, C. M. Gabardo, A. Ozden, C. T. Dinh, J. Li, Y. Wang, J. P. Edwards, Y. Xu, C. Mccallum, L. Tao, Z. Liang, M. Luo, X. Wang, H. Li, C. P. O. Brien, C. Tan, D. Nam, R. Quintero-bermudez, T. Zhuang, Y. C. Li, Z. Han, R. D. Britt, D. Sinton, T. Agapie, J. C. Peters and E. H. Sargent, *Nature*, 2020, 577, 509–514.
- 19 A. Ozden, F. Li, F. P. Garcla De Arquer, A. Rosas-Hernández, A. Thevenon, Y. Wang, S. F. Hung, X. Wang, B. Chen, J. Li, J. Wicks, M. Luo, Z. Wang, T. Agapie, J. C. Peters, E. H. Sargent and D. Sinton, ACS Energy Lett., 2020, 5, 2811–2818.
- 20 J. Lee, J. Lim, C. W. Roh, H. S. Whang and H. Lee, J. CO2 Util., 2019, 31, 244–250.
- 21 S. Komatsu, M. Tanaka, A. Okumura and A. Kungi, Electrochim. Acta, 1995, 40, 745–753
- 22 D. W. Dewulf and A. J. Bard, Catal. Letters, 1988, 11, 73-79.
- 23 S. C. Perry, S. M. Gateman, R. Malpass-Evans, N. McKeown, M. Wegener, P. Nazarovs, J. Mauzeroll, L. Wang and C. Ponce de León, *Chemosphere*, 2020, 248, 125993.
- 24 J. Li, A. Ozden, M. Wan, Y. Hu, F. Li, Y. Wang, R. R. Zamani, D. Ren, Z. Wang, Y. Xu, D. H. Nam, J. Wicks, B. Chen, X. Wang, M. Luo, M. Graetzel, F. Che, E. H. Sargent and D. Sinton, *Nat. Commun.*, 2021, **12**, 2808.

- 25 W. H. Lee, C. Lim, S. Y. Lee, K. H. Chae, C. H. Choi, U. Lee, B. K. Min, Y. J. Hwang and H. S. Oh, *Nano Energy*, 2021, 84, 105859.
- 26 Z. Gu, H. Shen, Z. Chen, Y. Yang, C. Yang, Y. Ji, Y. Wang, C. Zhu, J. Liu, J. Li, T. K. Sham, X. Xu and G. Zheng, *Joule*, 2021, **5**, 429–440.
- 27 G. O. Larrazábal, V. Okatenko, I. Chorkendorff, R. Buonsanti and B. Seger, ACS Appl. Mater. Interfaces, 2022, 14, 7779-7787.
- 28 G. Zhang, Z. J. Zhao, D. Cheng, H. Li, J. Yu, Q. Wang, H. Gao, J. Guo, H. Wang, G. A. Ozin, T. Wang and J. Gong, *Nat. Commun.*, 2021, **12**, 5745.