SUPPORTING INFORMATION

Crystalline Microporous Small-molecule Semiconductors Based on Porphyrin for High-performance Chemiresistive Gas Sensing

Wei-Hua Deng,^{+abc} Liang He,^{+abc} Er-Xia Chen,^{ac} Guan-E Wang,^a Xiao-Liang Ye,^a Zhi-Hua Fu,^a Qipu Lin^{* abc} and Gang Xu^{*abc}

Table S1. Crystallographic data of 2				
Compound name	2			
Empirical formula	C ₉₆ H ₅₇ N ₈ O ₁₆ , 2(H ₄ N), 2(C ₂ H ₃ N)			
Formula weight	1948.91			
Temperature/K	293			
Crystal system	monoclinic			
Space group	P21/n			
a/Å	22.6949			
b/Å	9.6108			
c/Å	23.3758			
α/°	90			
6/°	97.186			
٧/°	90			
Volume/Å ³	7905.5(3)			
Ζ	2			
$ ho_{calc}/g\ cm^{-3}$	1.280			
μ/mm ⁻¹	0.402			
F(000)	1766			
Radiation	GaK α (λ = 1.34050)			
2ϑ range for data collection/°	4.448~105.864			
Collected reflections	38175			
Independent reflections	8918 [R _{int} = 0.0432, <i>R</i> _{sigma} = 0.0360]			
Goodness-of-fit on F ²	1.075			
Final R indexes [$I >= 2\sigma(I)$]	$^{[a]}R_1 = 0.0477, \ ^{[b]}wR_2 = 0.1313$			
Final R indexes [all data]	$^{[a]}R_1 = 0.0605, \ ^{[b]}wR_2 = 0.1393$			
CCDC No.	2127390			

^[a] $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$; [b] $wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}$.

Please do not adjust margins

Journal Name

Powder X-Ray diffraction (PXRD)

PXRD patterns were collected for polycrystalline samples using a Rigaku Dmax 2500 X-ray diffractometer using copper radiation (Cu K_{α} , $\lambda = 1.5418$ Å). Profiles were collected at rt in the angular range 3° < 2 ϑ < 45° with a step size of 0.02. Molecular modeling was carried out using Reflex Plus, a module implemented in Materials Studio (version 4.4) by Accelrys Inc. The initial structure of **1** was constructed piecewise starting with a triclinic space group *P*-1. The Pseudo-Voigt function was used for whole profile fitting and Berrar-Baldinozzi function was used for asymmetry correction during the refinement processes. The predicted structure was validated with Rietveld refinements against the observed PXRD patterns.

Table S2. Refinement parameters of

Compound name	1
Refined composition	C ₄₈ H ₃₀ N ₄ O ₈
Formula weight	790.76
Crystal system	triclinic
Space group	P-1
a/Å	8.1865
b/Å	16.210
c/Å	19.978
α/°	74.981
6/°	80.473
γ/°	84.737
Volume/Å ³	2521.9
Z	2
$ ho_{calc}/g \text{ cm}^{-3}$	1.041
2ϑ range for data collection/°	3~45
R _p (%) [Rietveld]	6.84
R _{wp} (%) [Rietveld]	8.63

Table S3. Atomic coordinates of 1

Atom	x	у	Z
01	0.21027	0.13501	0.89336
02	0.30200	0.04124	0.82937
H2	0.32061	0.04035	0.78795
03	-0.06419	0.23397	0.13235
04	0.17990	0.16876	0.15425
H4	0.16068	0.14150	0.12736
05	0.24418	1.00708	-0.00703
H5	0.29629	1.04611	-0.03426
06	0.12329	0.06026	1.08988
07	0.30654	0.94722	0.74702
08	0.55313	0.97604	0.68939
H8	0.62721	0.94969	0.6692
N1	0.28234	0.69579	0.42071
N2	0.29317	0.55402	0.54159
H2A	0.26447	0.56569	0.50052
N3	0.20430	0.43850	0.46015
N4	0.23277	0.59131	0.33549
H4A	0.23221	0.58789	0.37921
C1	0.26269	0.11381	0.83398
C2	0.16265	0.26580	0.77392
H2B	0.11080	0.27318	0.81720
C3	0.24444	0.18810	0.76898
C4	0.32195	0.17707	0.70429
H4B	0.37667	0.12509	0.70099
C5	0.31766	0.24374	0.64455
H5A	0.36952	0.23636	0.60127
C6	0.23587	0.32143	0.64949
C7	0.15836	0.33246	0.71417
H7	0.10364	0.38445	0.71748
C8	0.06046	0.22245	0.16225
С9	0.08994	0.27904	0.20838
C10	0.21704	0.25558	0.24898
H10	0.28422	0.20661	0.24673
C11	0.24373	0.30530	0.29296
H11	0.32876	0.28960	0.32012
C12	0.14331	0.37850	0.29633
C13	0.01622	0.40196	0.25573
H13	-0.05097	0.45093	0.25799
C14	-0.01047	0.35224	0.21176
H14	-0.09551	0.36794	0.18459
C15	0.42574	0.93826	0.70169
C16	0.42062	0.87003	0.65899

4 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

170.29020.81210.6828H170.227080.811280.72497C180.274470.755420.64378H180.191110.716660.5598C200.570110.814590.55698H200.571660.815420.51467C210.523670.871270.55605C220.027071.024600.05085C230.224850.955340.11848C240.011170.950130.11947H240.027120.92110.1518C250.125200.881190.23690C260.515720.818440.23333C270.364800.824550.17234C280.351370.8877440.7141C280.351370.887740.7141C280.427330.887740.7141C290.168570.434710.34025C300.168570.434710.34025C310.12530.34690.4273C310.10350.314600.4112C320.168570.347410.5583C330.95420.47240.5583C340.23090.355540.5373C350.39640.267510.55873C350.39640.36790.5385C350.39640.47240.5583C350.39640.37560.5385C350.39640.37560.5385C350.39640.36750.5385 <trr< th=""><th></th><th></th><th></th><th></th></trr<>				
h12 0.22708 0.81128 0.27447 C18 0.27447 0.75542 0.64478 H15 0.15111 0.71666 0.5894 C20 0.50211 0.81452 0.55698 C21 0.52676 0.87127 0.59605 H21 0.6073 0.91033 0.58009 C22 0.20276 1.02460 0.05085 C23 0.22485 0.95634 0.11848 C24 0.01177 0.95013 0.11947 C25 0.12520 0.8819 0.23690 C26 0.5172 0.81844 0.27711 C26 0.5172 0.81844 0.27711 C27 0.36480 0.82465 0.17234 C28 0.45172 0.81844 0.23791 C29 0.16857 0.43471 0.34025 C31 0.16253 0.4460 0.40055 C32 0.16857 0.43471 0.34025 C33 0.16857 0.43471 0.34025 C34 0.23690 0.3254 0.5821 C35 0.16857 0.43471 0.34025 C34 0.1692 0.34849 0.4129 C35 0.32640 0.3576	C17	0.29602	0.81211	0.68286
C180.274470.75620.64378H180.191110.716660.5894C200.502110.814590.55698H200.571660.815420.51487C210.523670.871270.55605H210.607030.910030.56009C220.202761.024600.05985C330.224850.956340.11848C440.027120.952110.1818C550.125200.8817910.23690C450.045540.877040.23771C460.251720.818440.23333C70.364800.824650.17234C480.427030.897740.07411C490.65240.31370.89399C310.163040.400550.41259C320.168570.314600.41259C330.197500.384690.52031C340.239000.395540.52031C350.314600.412590.31461C360.395640.42890.52031C370.391040.568180.64932C360.392640.42890.5332C370.391040.568180.64932C360.392640.42890.5332C370.391040.568180.64932C360.392640.643740.5648C370.392640.568180.64932C360.392640.643740.54932C370.392640.56818	H17	0.22708	0.81128	0.72497
H8 0.3111 0.7566 0.6594 C19 0.37792 0.75666 0.5598 H20 0.55211 0.81493 0.55698 H20 0.53267 0.81717 0.9606 C21 0.52367 0.81717 0.9606 C22 0.20276 1.02460 0.05085 C23 0.22485 0.95613 0.17947 H24 0.02712 0.99211 0.1818 C25 0.15520 0.81819 0.23800 H25 0.49554 0.81819 0.23801 C27 0.36480 0.82465 0.17234 C28 0.35137 0.89374 0.4402 C29 0.16857 0.43471 0.4402 C31 0.16857 0.43471 0.4402 C32 0.16857 0.43471 0.4402 C34 0.2393 0.1412 0.4412 C35 0.23651 0.5526 0.3526 C34 0.1956 0.37691 0.55226	C18	0.27447	0.75542	0.64378
19 0.3772 0.7566 0.5894 220 0.52105 0.81542 0.5168 121 0.52367 0.87127 0.59605 121 0.60703 0.91003 0.50895 122 0.20276 1.02460 0.05985 123 0.22485 0.95634 0.11844 124 0.01717 0.95013 0.17947 124 0.02712 0.92911 0.23890 125 0.04954 0.87704 0.27771 126 0.21520 0.81149 0.33333 127 0.36400 0.82465 0.17234 128 0.42703 0.89774 0.07411 129 0.16857 0.44171 0.34025 131 0.10235 0.21460 0.41259 1431 0.06200 0.27459 0.42281 1432 0.06554 0.24251 0.5884 1432 0.06554 0.42251 0.5884 1432 0.23690 0.32289 0.32391 1432 0.36904 0.43253 0.4388	H18	0.19111	0.71666	0.65974
C20 0.5211 0.81499 0.55989 H20 0.57106 0.81542 0.51467 C11 0.53267 0.87127 0.58005 H21 0.60703 0.91003 0.58009 C22 0.20276 1.02460 0.05685 C33 0.24853 0.95013 0.17947 H24 0.02712 0.9211 0.1818 C25 0.12520 0.8819 0.23333 C27 0.36480 0.82465 0.7724 C28 0.35137 0.89359 0.14627 C29 0.16857 0.43471 0.34025 C31 0.10235 0.31460 0.4328 C32 0.19564 0.26211 0.3583 C33 0.16857 0.43471 0.34025 C34 0.10235 0.1460 0.43125 C34 0.12956 0.32826 0.43125 C35 0.29642 0.47424 0.58684 C36 0.36655 0.48135 0.648	C19	0.37752	0.75666	0.58084
120 0.53106 0.81542 0.5487 C21 0.53367 0.87127 0.59609 C22 0.20276 1.02460 0.65085 C33 0.22485 0.95013 0.17947 C44 0.11177 0.99211 0.1818 C25 0.12520 0.88119 0.23890 C26 0.25172 0.81844 0.27333 C27 0.36480 0.82465 0.11692 C28 0.35137 0.83959 0.1402 C29 0.16657 0.44471 0.7741 C30 0.16357 0.44471 0.7451 C31 0.02020 0.27459 0.4259 C32 0.16957 0.44471 0.7461 C33 0.19750 0.3269 0.52031 H31 0.06200 0.27459 0.4228 C34 0.23809 0.53032 0.3364 C35 0.23642 0.47424 0.55826 C34 0.23809 0.53835 0.56932	C20	0.50211	0.81459	0.55698
C1 0.5267 0.87127 0.59605 H21 0.60703 0.91033 0.59605 C22 0.20276 1.02460 0.05085 C3 0.22485 0.95634 0.11848 C4 0.11177 0.95013 0.17947 H24 0.02712 0.98119 0.23690 H25 0.04954 0.87704 0.27771 C26 0.25172 0.81844 0.23333 C27 0.36480 0.89794 0.07411 C28 0.42703 0.89774 0.07411 C29 0.16857 0.43471 0.3005 C30 0.16904 0.27499 0.44289 C31 0.00235 0.31460 0.4512 H31 0.06200 0.27499 0.43285 C32 0.19564 0.26513 0.5876 C33 0.19750 0.38269 0.53733 C34 0.39084 0.43836 0.64592 H36 0.39084 0.43836 0.64592 H37 0.39084 0.43836 0.64592	H20	0.57106	0.81542	0.51487
H21 0.60703 0.91003 0.58009 C22 0.02076 1.02460 0.05065 C33 0.2485 0.95013 0.11947 H24 0.02712 0.99211 0.1818 C25 0.12520 0.88119 0.23660 H25 0.4954 0.87014 0.27771 C26 0.25172 0.88144 0.23333 C27 0.36480 0.82465 0.17234 C28 0.5137 0.88959 0.11492 H28 0.42703 0.89774 0.34025 C30 0.16807 0.43471 0.34025 C31 0.10325 0.31460 0.45112 H31 0.06200 0.27459 0.32761 C33 0.1956 0.36769 0.52031 H32 0.68654 0.426251 0.5826 C34 0.23609 0.33554 0.64382 C36 0.36655 0.48218 0.64392 C36 0.36655 0.48218 0.64392 C37 0.39104 0.43836 0.63892 <t< th=""><th>C21</th><th>0.52367</th><th>0.87127</th><th>0.59605</th></t<>	C21	0.52367	0.87127	0.59605
C22 0.20276 1.02460 0.05085 C33 0.22485 0.95634 0.11947 C44 0.11177 0.95013 0.12744 C25 0.12520 0.88119 0.23690 H25 0.04954 0.87774 0.23733 C27 0.36480 0.82465 0.11492 C28 0.35137 0.89359 0.11492 C28 0.42572 0.43471 0.34025 C30 0.16304 0.40055 0.41259 C31 0.10235 0.31460 0.45112 H31 0.06200 0.27459 0.52081 C32 0.19550 0.31869 0.52081 C33 0.19750 0.38269 0.52382 C34 0.29842 0.4724 0.5864 C35 0.39064 0.4836 0.68392 C34 0.39064 0.4836 0.68392 C35 0.39064 0.4836 0.66481 C36 0.39076 0.58361 0.	H21	0.60703	0.91003	0.58009
C23 0.22485 0.95634 0.11848 C24 0.1177 0.95013 0.17947 H24 0.02712 0.93211 0.1818 C25 0.04954 0.87704 0.27771 C26 0.25172 0.81844 0.23333 C27 0.36480 0.82465 0.17234 C28 0.35137 0.893754 0.07411 C29 0.16857 0.43471 0.34025 C30 0.16857 0.43472 0.34025 C31 0.0200 0.27459 0.43285 C32 0.1956 0.30769 0.52031 H31 0.06200 0.27459 0.43285 C32 0.1956 0.30769 0.52031 H32 0.06654 0.26251 0.52322 C34 0.29662 0.47424 0.5864 C35 0.29642 0.47424 0.5864 C36 0.39084 0.43836 0.66492 H37 0.33104 0.56015 0.58393 C36 0.39084 0.56015 0.58849 <tr< th=""><th>C22</th><th>0.20276</th><th>1.02460</th><th>0.05085</th></tr<>	C22	0.20276	1.02460	0.05085
C24 0.11177 0.95013 0.17947 H2A 0.02712 0.99111 0.1818 C25 0.12520 0.88119 0.23690 H25 0.04954 0.87704 0.2771 C26 0.25172 0.81844 0.23333 C27 0.34840 0.82465 0.17234 C28 0.35137 0.89379 0.1492 C29 0.16857 0.43471 0.34025 C30 0.15304 0.40055 0.41259 C31 0.02500 0.27459 0.43285 C32 0.11956 0.30769 0.52031 H31 0.06204 0.26251 0.55826 C33 0.19750 0.38269 0.55733 C35 0.29642 0.47424 0.5664 C36 0.36665 0.48118 0.64483 H37 0.33040 0.66017 0.57120 C38 0.34051 0.59336 0.66481 H37 0.33004 0.63074 0.44015 H36 0.34051 0.59336 0.66481 <	C23	0.22485	0.95634	0.11848
H24 0.02712 0.99211 0.1818 C25 0.12520 0.88119 0.23690 H25 0.04954 0.87704 0.23733 C26 0.25172 0.8144 0.23333 C27 0.36480 0.82465 0.17234 C28 0.35137 0.89359 0.11492 H28 0.42703 0.89774 0.30425 C30 0.16304 0.40055 0.41259 C31 0.10235 0.31460 0.45112 H31 0.66200 0.27459 0.4285 C32 0.1956 0.30769 0.52031 H32 0.26654 0.26251 0.55826 C33 0.19750 0.38269 0.52322 C34 0.23809 0.39554 0.58733 C35 0.26654 0.2611 0.55826 C36 0.36655 0.43218 0.64892 C37 0.39104 0.5818 0.64892 C36 0.39084 0.43336 0.68392 C37 0.39104 0.5618 0.5648 C38 0.3017 0.73656 0.4889 C41 0.29867 0.3306 0.37217 H42 0.3704 0.8705 </th <th>C24</th> <th>0.11177</th> <th>0.95013</th> <th>0.17947</th>	C24	0.11177	0.95013	0.17947
C25 0.12520 0.88119 0.23690 H25 0.04954 0.87704 0.27771 C26 0.25172 0.81844 0.23333 C27 0.36480 0.82465 0.17234 C28 0.51377 0.89359 0.11492 H28 0.42703 0.89774 0.07411 C29 0.16857 0.43471 0.34025 C30 0.16304 0.40055 0.41259 C31 0.10235 0.31460 0.45112 H31 0.66200 0.27459 0.43285 C32 0.19750 0.33269 0.52322 C34 0.23694 0.26511 0.55826 C33 0.19750 0.33269 0.52322 C34 0.23694 0.43836 0.64892 C35 0.26651 0.58736 0.58936 C36 0.30645 0.46218 0.64889 C37 0.39104 0.56818 0.64889 C37 0.3317 0.73656 0.4889 C37 0.33074 0.44015 0.57120	H24	0.02712	0.99211	0.1818
H25 0.04954 0.87704 0.27771 C26 0.25172 0.81844 0.2333 C27 0.36480 0.82465 0.17234 C28 0.35137 0.89595 0.11492 H28 0.42703 0.89774 0.07411 C29 0.16857 0.43471 0.34025 C30 0.16304 0.40055 0.41259 C31 0.02020 0.27459 0.32385 C32 0.11956 0.30769 0.5231 H31 0.66200 0.27459 0.32385 C33 0.19750 0.33269 0.52322 C34 0.2809 0.39554 0.58733 C35 0.28642 0.47424 0.58684 C36 0.36665 0.48218 0.64592 H36 0.39084 0.43836 0.64892 C37 0.39104 0.56818 0.58488 H37 0.43219 0.59336 0.66481 C38 0.34174 0.57120 0.33809 C39 0.39074 0.4015 0.59350 C40 0.3017 0.73556 0.4889 C41 0.29867 0.83074 0.4015 H41 0.30704 0.8	C25	0.12520	0.88119	0.23690
C26 0.25172 0.81844 0.23333 C27 0.36480 0.82465 0.17234 C28 0.35137 0.89359 0.11492 H28 0.42703 0.89359 0.1492 C29 0.16857 0.43471 0.3025 C30 0.16304 0.40055 0.41259 C31 0.10235 0.31460 0.45112 H31 0.06200 0.27459 0.43285 C32 0.11956 0.30769 0.52031 H32 0.08654 0.26251 0.53322 C34 0.23809 0.39554 0.58733 C35 0.29642 0.47424 0.56684 C36 0.36665 0.48218 0.64592 H36 0.39084 0.43836 0.68488 H37 0.43329 0.59336 0.66481 C38 0.34124 0.61017 0.57120 C39 0.34095 0.69615 0.53850 C40 0.30317 0.73656 0.46489 C41 0.29867 0.88705 0.3390	H25	0.04954	0.87704	0.27771
C27 0.36480 0.82465 0.17234 C28 0.35137 0.89359 0.11492 H28 0.42703 0.89774 0.07411 C29 0.16857 0.43471 0.34025 C30 0.16304 0.40055 0.41259 C31 0.06200 0.27459 0.43285 C32 0.1956 0.30769 0.52031 H32 0.08654 0.26251 0.58266 C33 0.19750 0.33269 0.52322 C34 0.23809 0.39554 0.5873 C35 0.29642 0.47424 0.58684 C36 0.36665 0.48218 0.64592 H36 0.39084 0.43386 0.68392 C37 0.39104 0.56818 0.63488 H37 0.43329 0.59336 0.66481 C38 0.34124 0.61017 0.57120 C39 0.304095 0.69615 0.53850 C41 0.29867 0.83074 0.46174 C42 0.27848 0.83496 0.37217	C26	0.25172	0.81844	0.23333
C28 0.35137 0.89359 0.11492 H28 0.42703 0.89774 0.07411 C29 0.16857 0.43471 0.34025 G30 0.16304 0.40055 0.41259 G31 0.10235 0.31460 0.45112 G32 0.11956 0.30769 0.52031 G33 0.19750 0.38269 0.52322 G34 0.23809 0.39554 0.58733 G35 0.29642 0.47424 0.5884 G36 0.36665 0.48218 0.68992 G37 0.39104 0.56818 0.63488 G36 0.34025 0.66481 0.57120 G39 0.34124 0.61017 0.57120 G39 0.34124 0.61017 0.57120 G39 0.34035 0.69615 0.53850 G40 0.30317 0.73656 0.46889 G41 0.29867 0.83074 0.46174 G42 0.27505 0.88705 0.3390 G43 0.26255 0.75590 0.35449	C27	0.36480	0.82465	0.17234
H280.427030.897740.07411C290.168570.434710.34025G300.163040.400550.41259G310.102350.314600.45112H310.062000.274590.43285G320.119560.307690.52031H320.86540.262510.55826G330.197500.382690.52322G340.238090.395540.58733G350.296420.474240.5664G360.366550.482180.64592H360.390840.438360.68392G370.391040.568180.66481G380.341240.610170.57120G390.30050.696150.33850C410.298670.830740.44015H410.307040.874260.46124C420.276480.834960.37117H420.275050.887050.3390C430.262510.735590.35449C440.260250.755900.35449C440.260250.755900.35449C440.260250.755900.35449C440.260250.743650.28341C440.268310.660760.28341C450.268310.660750.23151	C28	0.35137	0.89359	0.11492
C29 0.16857 0.43471 0.34025 C30 0.16304 0.40055 0.41259 C31 0.10235 0.31460 0.45112 H31 0.06200 0.27459 0.43285 C32 0.11956 0.30769 0.52031 H32 0.08654 0.26251 0.55826 C33 0.19750 0.3259 0.52322 C34 0.23809 0.39554 0.58733 C35 0.29642 0.47424 0.58684 C36 0.36665 0.48218 0.64592 H36 0.39084 0.43836 0.638392 C37 0.39104 0.56818 0.6481 C38 0.34124 0.61017 0.57120 C39 0.34095 0.66615 0.53850 C40 0.3017 0.73656 0.46889 C41 0.29867 0.83074 0.44015 H41 0.30704 0.87426 0.46174 C42 0.27648 0.83496 0.37217 H42 0.27605 0.75590 0.33409	H28	0.42703	0.89774	0.07411
C30 0.16304 0.40055 0.41259 C31 0.10235 0.31460 0.45112 H31 0.66200 0.27459 0.43285 C32 0.11956 0.30769 0.52031 H32 0.08654 0.26251 0.55826 C33 0.19750 0.38269 0.52322 C34 0.23809 0.39554 0.58733 C35 0.29642 0.47424 0.58684 C36 0.36665 0.48218 0.64552 H36 0.39084 0.43836 0.63488 H37 0.43229 0.59336 0.66481 C38 0.34124 0.61017 0.57120 C39 0.34095 0.69615 0.53850 C40 0.3017 0.73656 0.46889 C41 0.29667 0.83074 0.44015 H41 0.30704 0.84726 0.46174 C42 0.27848 0.83096 0.37217 H42 0.26295 0.88705 <t< th=""><th>C29</th><th>0.16857</th><th>0.43471</th><th>0.34025</th></t<>	C29	0.16857	0.43471	0.34025
C31 0.10235 0.31460 0.45112 H31 0.06200 0.27459 0.43285 C32 0.11956 0.30769 0.52031 H32 0.08654 0.26251 0.55826 C33 0.19750 0.38269 0.52322 C34 0.23809 0.39554 0.58733 C35 0.29642 0.47424 0.58684 C36 0.39084 0.43336 0.68392 C37 0.39104 0.56818 0.64592 H36 0.39084 0.61017 0.57120 C38 0.34124 0.61017 0.57120 C39 0.34095 0.69615 0.53850 C41 0.29867 0.83074 0.44015 H41 0.30704 0.87426 0.46174 C42 0.27848 0.83496 0.37217 H42 0.26025 0.73505 0.3390 C43 0.26295 0.75350 0.3349 C44 0.26025 0.73565 0.29300 C43 0.26287 0.66076 0.28341	C30	0.16304	0.40055	0.41259
H310.062000.274590.43285G320.119560.307690.52031H320.086540.262510.55826G330.197500.382690.52322G340.238090.395540.58733G350.296420.474240.58684G360.366650.482180.64592H360.390840.438360.68392G370.391040.568180.66481G380.341240.610170.57120G390.340950.696150.53850C400.303740.430260.46174G410.298670.837420.44015H420.275050.887050.3390C430.262550.743650.23300C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.26050.560050.23151	C31	0.10235	0.31460	0.45112
G32 0.11956 0.30769 0.52031 H32 0.08654 0.26251 0.55826 G33 0.19750 0.38269 0.52322 G34 0.23809 0.39554 0.58733 G35 0.29642 0.47424 0.58684 G36 0.36665 0.48218 0.64592 H36 0.39084 0.43836 0.68392 G37 0.39104 0.56818 0.63488 H37 0.43329 0.59336 0.66481 G38 0.34124 0.61017 0.57120 G39 0.34095 0.69615 0.53850 C40 0.30317 0.73656 0.46889 C41 0.29867 0.83074 0.44015 H41 0.30704 0.87426 0.46174 C42 0.27548 0.88705 0.3390 C43 0.26255 0.74365 0.29300 C44 0.26025 0.74365 0.29300 C45 0.24823 0.66076 0.28341 C46 0.25287 0.64230 0.21683	H31	0.06200	0.27459	0.43285
H320.086540.262510.55826C330.197500.382690.52322C340.238090.395540.58733C350.296420.474240.58684C360.366650.482180.64592H360.390840.438360.63488C370.391040.568180.66481C380.341240.610170.57120C390.340950.696150.53850C410.298670.830740.44015H410.307040.874260.46174C420.275050.887050.3390C430.262950.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.263110.680270.7282C470.230560.560050.23151	C32	0.11956	0.30769	0.52031
C330.197500.382690.52322C340.238090.395540.58733C350.296420.474240.58684C360.366650.482180.64592H360.390840.438360.68392C370.391040.568180.66481C380.341240.610170.57120C390.340950.696150.53850C400.303170.736560.46889C410.298670.830740.44015H420.275050.887050.3390C430.262950.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.268310.680270.23151	H32	0.08654	0.26251	0.55826
C340.238090.395540.58733C350.296420.474240.58684C360.366650.482180.64592H360.390840.438360.638392C370.391040.568180.66481H370.433290.593360.66481C380.341240.610170.57120C390.340950.696150.53850C400.303170.736560.46889C410.298670.830740.44015H420.275050.887050.3390C430.262950.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.26050.560050.23151	C33	0.19750	0.38269	0.52322
C350.296420.474240.58684C360.366650.482180.64592H360.390840.438360.68392C370.391040.568180.63488H370.433290.593360.66481C380.341240.610170.57120C390.340950.696150.53850C400.303170.736560.46889C410.298670.830740.44015H410.307040.874260.46174C420.278480.834960.37217H420.260250.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.268310.680270.17282C470.230560.560050.23151	C34	0.23809	0.39554	0.58733
C360.366650.482180.64592H360.390840.438360.68392C370.391040.568180.63488H370.433290.593360.66481C380.341240.610170.57120C390.340950.696150.53850C400.303170.736560.46889C410.298670.830740.44015H410.307040.874260.46174C420.278480.837950.3390C430.262950.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.68270.17282H460.266310.680270.23151	C35	0.29642	0.47424	0.58684
H360.390840.438360.68392C370.391040.568180.63488H370.433290.593360.66481C380.341240.610170.57120C390.340950.696150.53850C400.303170.736560.46889C410.298670.830740.44015H410.307040.874260.46174C420.278480.834960.37217H420.275050.887050.3390C430.262950.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.268310.680270.17282C470.230560.560050.23151	C36	0.36665	0.48218	0.64592
C370.391040.568180.63488H370.433290.593360.66481C380.341240.610170.57120C390.340950.696150.53850C400.303170.736560.46889C410.298670.830740.44015H410.307040.874260.46174C420.278480.834960.37217H420.275050.887050.3390C430.262550.743650.29300C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.260310.680270.17282C470.230560.560050.23151	H36	0.39084	0.43836	0.68392
H370.433290.593360.66481C380.341240.610170.57120C390.340950.696150.53850C400.303170.736560.46889C410.298670.830740.44015H410.307040.874260.46174C420.278480.834960.37217H420.275050.887050.3390C430.262950.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.260310.680270.17282C470.230560.560050.23151	C37	0.39104	0.56818	0.63488
C380.341240.610170.57120C390.340950.696150.53850C400.303170.736560.46889C410.298670.830740.44015H410.307040.874260.46174C420.278480.834960.37217H420.275050.887050.3390C430.260250.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.260560.560050.23151	H37	0.43329	0.59336	0.66481
C390.340950.696150.53850C400.303170.736560.46889C410.298670.830740.44015H410.307040.874260.46174C420.278480.834960.37217H420.275050.887050.3390C430.262950.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.260310.680270.17282C470.230560.560050.23151	C38	0.34124	0.61017	0.57120
C400.303170.736560.46889C410.298670.830740.44015H410.307040.874260.46174C420.278480.834960.37217H420.275050.887050.3390C430.262950.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.268310.680270.17282C470.230560.560050.23151	C39	0.34095	0.69615	0.53850
C410.298670.830740.44015H410.307040.874260.46174C420.278480.834960.37217H420.275050.887050.3390C430.262950.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.268310.680270.17282C470.230560.560050.23151	C40	0.30317	0.73656	0.46889
H410.307040.874260.46174C420.278480.834960.37217H420.275050.887050.3390C430.262950.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.260310.680270.17282C470.230560.560050.23151	C41	0.29867	0.83074	0.44015
C420.278480.834960.37217H420.275050.887050.3390C430.262950.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.268310.680270.17282C470.230560.560050.23151	H41	0.30704	0.87426	0.46174
H420.275050.887050.3390C430.262950.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.268310.680270.17282C470.230560.560050.23151	C42	0.27848	0.83496	0.37217
C430.262950.755900.35449C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.268310.680270.17282C470.230560.560050.23151	H42	0.27505	0.88705	0.3390
C440.260250.743650.29300C450.248230.660760.28341C460.252870.642300.21683H460.268310.680270.17282C470.230560.560050.23151	C43	0.26295	0.75590	0.35449
C450.248230.660760.28341C460.252870.642300.21683H460.268310.680270.17282C470.230560.560050.23151	C44	0.26025	0.74365	0.29300
C46 0.25287 0.64230 0.21683 H46 0.26831 0.68027 0.17282 C47 0.23056 0.56005 0.23151	C45	0.24823	0.66076	0.28341
H46 0.26831 0.68027 0.17282 C47 0.23056 0.56005 0.23151	C46	0.25287	0.64230	0.21683
C47 0.23056 0.56005 0.23151	H46	0.26831	0.68027	0.17282
	C47	0.23056	0.56005	0.23151

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 5

H47	0.22415	0.52924	0.19879	
C48	0.21765	0.52514	0.30530	

Figure S1. (a, b) SEM images of compound 1; (c, d) SEM images of compound 2.

Figure S2. PXRD patterns of (a) 2 and (b) 3.

Figure S3. FT-IR spectra of **1**, **2** and **3**. The as-synthesized samples **1**, **2** and **3** have similar spectra, where the band at 3330⁻³³⁰⁰ cm⁻¹ was assigned to the stretching vibration bond of -NH, the peak near 1390 cm⁻¹ for the characteristic vibration of $-C_{\alpha}N$, $-C_{\alpha}C_{\beta}$ and the bands at 1750⁻¹⁶²⁰ cm⁻¹ were due to -C = O in carboxylic acid.^[1]

Figure S4. (a) The hydrogen-bonding node A for 1 (a and c) and node B for 2 (b and d).

Figure S5. Hydrogen bonding chain built of LB and LC nodes for 2.

Figure S6. The π - π interaction modes between adjacent benzene rings for **1** (a) and **2** (b), and the relative positions of the two neighbouring porphyrins for **1** (c) and **2** (d).

Figure S7. TGA curves of (a) 1 and (b) 2.

Figure S8. Various temperature PXRD patterns of (a) 1 and (b) 2.

Figure S9. PXRD patterns of (a) 1 and (b) 2 samples after soaking in water or organic solvents (acetone, dichloromethane (CH₂Cl₂), toluene, acetonitrile (CH₃CN), and *n*-hexane) for at least 12 h.

Figure S10. Temperature-dependent I–V curves of (a) 2 and (b) 3.

Figure S11. I-V curve of 1 at rt and under visible light irradiation

Figure S12. (a) Photographs of sensor devices in this manuscript. (b) Schematic illustration of the gas-detection equipment at rt and under visible light irradiation.

Figure S13. Dynamic response–recovery successive cycling curves for (a) 2 and (b) 3 toward 100 ppm NO₂ at rt and under visible light irradiation.

Figure S14. (a) Dynamic response–recovery curves and (b) response and recovery time for **1** toward 100 ppm NO₂ at rt and under visible light irradiation (380 mW cm⁻²).

Figure S15. Transient photocurrent responses of (a) 1, (b) 2 and (c) 3 at rt and under visible light irradiation.

Figure S16. Dynamic response–recovery curves of NO_2 sensing properties of (a) **2** and (b) **3** sensor in a concentration ranging of 0.04-100 ppm under visible light irradiation at rt.

ARTICLE

Table S4. NO₂ sensing performances of different sensor devices at rt.

Sensing materials	tres/trec (min)	Response (R _{eas} /R _{air} -1)%	Concentration (ppm)	LOD (ppb)	Ref.
1	2.5/0.6	1.7×10 ⁵	100	20(exp.)	This work
3D graphene Flowers	33/0.03	1411	10	100(exp.)	[2]
3D graphene	8.3/50	74	10	_k	[3]
Graphene	~ ^j 10/10	27	5	-	[4]
Graphene/MoS ₂	10/10	12	0.5	50	[5]
Graphene/CeO ₂	0.31/4.1	5	10	5000	[6]
RGO	3.3-5/5	4	100	-	[7]
RGO	>5/>10	150	100	2000	[8]
RGO	15/20	815	100	-	[9]
RGO@Cu ₂ O	5/8	67	2	400	[10]
RGO/PET	3/5	6	10	500(exp.) ⁿ	[11]
sulfonated RGO	~ 8.3 /41	~ 640	20	2000	[12]
RGO/MoS ₂	5/7.5	~ 40	10	53	[13]
3D FRGOH ^a	7/13	8	10	57	[14]
3D S-RGOH ^b	~6.5/0.18	23	4	200(exp.)	[15]
RGO–IDTO ^c	>10/ > 16	1100	100	300(exp.)	[16]
Ag-S-RGO	0.2/0.33	90	100	500(exp.)	[17]
RGO/ SnO ₂	1.1/incomplete recovery	120	10	1000 (exp.)	[18]
CNT ^d	3/10	84	100	250(exp.)	[19]
CNT	10/10	90	10	44	[20]
CNTs/Au	_k	10	1	100	[21]
CNTs/SnO ₂	₽4.5/₽3.5	40	25	-	[22]
SnO ₂	1/12	~80	10	2000(exp.)	[23]
SnO-SnO ₂	0.95/5	500	10	100	[24]
amine-terminated SnO ₂	1.8/1.25	2100	0.4	250 (exp.)	[25]
ZnO	3.7/2	410	20	-	[26]
ZnO	15/48	120	20	-	[27]
ZnO1-x	13.7/15	259	1	-	[28]
$SnO_{1-\alpha}@ZnO_{1-\beta}@SnO_{2-\gamma}$	17.6/23.4	236	1	-	[29]
ZnO /RGO	1.25/2.2	119	1	-	[30]
ZnO-Ag	2.5/2.16	110	1	-	[31]
CdS/ZnO	0.45/3.8	337	1	5(exp.)	[32]
SnO ₂ /ZnO	1.5/3.7	619	5	1000(exp.)	[33]
ZnO/SnO ₂	7/8	1×10 ⁵	0.5	200(exp.)	[34]
ZnO/PbS	3/4	500	10	-	[35]
MoS ₂ /SnO ₂	6.8/1.2	28	10	500(exp.)	[36]
P₃HT ^f /ZnO	15/45	90	10	-	[37]
Au/ZnO	25/⊠40	60	5	-	[38]
$TiO_{2-x}N_x$	~ 6/6	~ 14	10	-	[39]
Polypyrrole /WO ₃	10/~91	16	10	5000(exp.)	[40]
RGO/WO₃	9/18	769	5	-	[41]
DBSA doped PPy–WO ₃	4.8/99.8	72	100	-	[42]

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

Journal Name

Polypyrrole–NiO	2.08/8.3	8	10	10000(exp.)	[43]
In ₂ O ₃ /RGO	4/24	725	30	-	[44]
In ₂ O ₃	10/15	61800	0.5	50 (exp.)	[45]
MoS ₂	8/25	60	100	-	[46]
MoS ₂	11.3/5.3	11	10	1000	[47]
MoS ₂ -Pt	>30/30	18	5	-	[48]
CdS	0.73/1.88	89	5	100	[49]
WS ₂ @MTCNF ^e	3.73/10	28	4	10	[50]
Ag/WS ₂	~5/10	58	25	1000(exp.)	[51]
PbS CQDs ^g	0.2/0.61	2170	50	500 (exp.)	[52]
Si	1.38/0.3($t_{50\%}$, microheater)	80	100	1000	[53]
Те	1.4/13 (t _{50%}) ^m	62	10	100(exp.)	[54]
Black Phosphorus	0.08/10	100	100	100(exp.)	[55]
Phosphorene	~10/10	9000	1	~ 20(exp.)	[56]
polythiophene	4.95/9.75	9	10	10000(exp.)	[57]
Electrospun polyaniline	1/-	80	1	~50	[58]
VOPc/F ₁₆ CuPc ^h	10/12	700	5	500(exp.)	[59]
PTCDI-Ph/p-6P ⁱ	~ 30/60	670	30	5000(exp.)	[60]
CH ₃ NH ₃ PbI _{3x} (SCN) _x	3.7/6	300	5	200	[61]
CuTAP(t-Bu)4 ^p	4.5/9	500	50	-	[62]
metal-thiourea complex	2.9/9.2	19000	10	-	[63]
polythiophene	3.7/26.7	33	100	-	[64]
Ag(SPh-NH ₂)	1/2.3	852	10	100	[65]
rGO/P NFs	4/10	250	5	150(exp.)	[66]
graphene	5/10	15	5	5000 (exp.)	[67]
graphene nanomesh	15/20	12	10	1000 (exp.)	[68]
rGO/Au	7/28	25	20	1000 (exp.)	[69]
rGO/Au	5/>11	50	8	200 (exp.)	[70]
CuPc	1.3/1.6	17	0.5	50 (exp.)	[71]
MnPS ₃	1.6/2.6	9530	35	100 (exp.)	[72]
MoS ₂	1/>10	200	1	120 (exp.)	[73]
SnO ₂ /MCN ⁰	7/12	1.1×10 ⁵	0.1	100 (exp.)	[74]
$g-C_3N_4/SnS_2$	-/2.76	1750	6	125 (exp.)	[75]
SnS ₂ /MoS ₂	0.03/0.5	2490	100	50 (exp.)	[76]
Black Phosphorus	8.3/5	30	0.04	5 (exp.)	[77]
MoS ₂ /GR	0.36/0.58	30	100	100000(exp)	[78]
UPC-H4a	0.28/0.26	43	2	40(exp)	[79]
Si-doped graphene	2.1/6.3	21.5	50	18(exp)	[80]
Pd-SnO ₂ -rGO	0.21/1.75	292	1	50(exp)	[81]
B-RGOH	-/1.58	25.3	0.8	20(exp)	[82]
N-RGOH	-/0.16	13	0.8	50(exp)	[82]
Metal phthaloc	yanine/ 1.67/1.67	1480	50	50(exp)	[83]
cobalt phthalocyanine	1.67/1.67	512	50	50(exp)	[84]
GaN/TiO ₂	2.3/2.6	32	500	1(exp)	[85]
MoS ₂	0.26/1.08	670	0.4	20(exp)	[86]

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

VO-rich ZnO nanowires	0.51/2.4	708	1	20(exp)	[87]
MoS ₂ /ZnO	0.33/0.33	607	1	50(exp)	[88]
ZnO quantum dots	2.5/1	650	1	50(exp)	[89]
TiO ₂ /graphene	0.5/1.5	330	1.75	70(exp)	[90]
SnO ₂	0.11/0.42	3400	10	100(exp)	[91]
Pd-SnO ₂ -RGO	0.21/1.75	292	1	50(exp)	[92]
Pt-In ₂ O ₃	-/5.96	2290	1	10(exp)	[93]
Pd-In ₂ O ₃	4.5/4.7	950	0.5	100(exp)	[94]
MoTe ₂	/2.7	7000	2	20(exp)	[95]
ZnO	2.9/6.2	100	0.15	25(exp)	[96]

a: 3D FRGOH (3D chemically functionalized reduced graphene oxide hydrogel); b: 3D S-RGOH (3D sulfonated RGO hydrogel); c: RGO–IDTO (Indium-doped SnO₂-graphene), d: CNT (single walled carbon nanotube); e: WS₂@MTCNFs (WS₂ edge functionalized carbon nanofibers); f: P₃HT (poly(3-hexylthiophene)); g: PbS CQDs (PbS Colloidal Quantum Dots); h: VOPc/ F_{16} CuPc (vanadyl phthalocyanine/ copper hexadecafluoro-phthalocyanine); i: PTCDI-Ph/p-6P (N,N'-diphenyl perylene tetracarboxylic diimide / para-hexaphenyl) ; j: "~" means estimated value of figure obtained; k: "-" means cannot extracted the information from the article; m: the response time $t_{50\%}$ is defined as the time to achieve 50% of its steady resistance in the response process, and the recovery time $t_{50\%}$ is defined as the time to reach 50% of its original resistance in the signal recovery process; n: "exp." means experimental detection limits; o: MCN (multiwalled carbon nanotubes). p: CuTAP(t-Bu)₄ (tetra-(tert-butyl)-5,10,15,20-tetraazaporphyrin copper)

Figure S17. Dynamic response-recovery curves of three different 1 sensor toward 100 ppm NO₂ at rt and under visible light irradiation.

Figure S18. Dynamic response curves of **1** sensor against 100 ppm of typical interference gases under visible light at rt. (a) SO₂, (b) CO₂, (c) C₆H₆, (d) CH₄ and CH₃-CH₃, (e) NH₃, (f) CH₃NH₂.

Figure S19. Dynamic response curves of **1** sensor against 100 ppm of typical interference gases under visible light at rt. (a) $CH_2=CH_2$, (b) $CH\equiv CH$, (c) H_2S , (d) Me_2CO (e) MeOH, (f) CH_3CH_2OH , (g) $C_6H_5CH_3$, (h) CO, (i) H_2 .

Figure S20. Sensing results of 1 toward H_2O at rt and under visible light irradiation, (a) real-time dynamic response-recovery curve in the concentration range of 5%~100% RH, (b) response versus [RH%] graph.

Figure S21. (a-f) the response-recovery curves of 1 towards NO2 in 7 weeks.

Figure S22. The long-term stability of 1 for NO₂ detection.

$2NO_2 + O^2 \rightarrow NO_3^- + NO_2^-$	(1)
$NO_2 + e^- \leftrightarrow NO_2^-$	(2)
$NO_2 + O_2^- + 2e^- \leftrightarrow NO_2^- + 2O^-$	(3)
$NO_2 + 2e^- \leftrightarrow NO_3^- + NO^-$	(4)

- Wu J., Feng S., Wei X., Shen J., Lu W., Shi H., Tao K., Lu S., Sun T., Yu L., Du C., Miao J., Norford L. K., Adv. Funct. Mater. 2016, 26, 7462-7469. [2]
- Chen Z., Wang J., Umar A., Wang Y., Li H., Zhou G., ACS Appl. Mater. Inter. 2017, 9, 11819-11827. [3]
- [4] Fowler J. D., Allen M. J., Tung V. C., Yang Y., Kaner R. B., Weiller B. H., ACS Nano 2009, 3, 301-306.
- Long H., Harley-Trochimczyk A., Thang P., Tang Z., Shi T., Zettl A., Carraro C., Worsley M. A., Maboudian R., Adv. Funct. Mater. 2016, 26, 5158-5165. [5]
- [6] Yang Y., Tian C., Sun L., Lu R., Zhou W., Shi K., Kan K., Wang J., Fu H., J. Mater. Chem. A. 2013, 1, 12742-12749.
- [7] Han T. H., Huang Y.-K., Tan A. T. L., Dravid V. P., Huang J., J. Am. Chem. Soc. 2011, 133, 15264-15267.
- [8] Lu G., Ocola L. E., Chen J., Nanotechnology 2009, 20, 445502-445511.
- [9] Lu G., Park S., Yu K., Ruoff R. S., Ocola L. E., Rosenmann D., Chen J., ACS Nano 2011, 5, 1154-1164.
- Deng S., Tjoa V., Fan H. M., Tan H. R., Sayle D. C., Olivo M., Mhaisalkar S., Wei J., Sow C. H., J. Am. Chem. Soc. 2012, 134, 4905-4917. [10]
- Dua V., Surwade S. P., Ammu S., Agnihotra S. R., Jain S., Roberts K. E., Park S., Ruoff R. S., Manohar S. K., Angew. Chem. Int. Ed. 2010, 49, 2154-2157. [11]
- Yuan W., Liu A., Huang L., Li C., Shi G., Adv. Mater. 2013, 25, 766-771. [12]
- Niu Y., Wang R., Jiao W., Ding G., Hao L., Yang F., He X., Carbon 2015, 95, 34-41. [13]
- [14] Wu J., Tao K., Zhang J., Guo Y., Miao J., Norford L. K., J. Mater. Chem. A. 2016, 4, 8130-8140.
- Wu J., Tao K., Guo Y., Li Z., Wang X., Luo Z., Feng S., Du C., Chen D., Miao J., Norford L. K., Adv. Sci. 2017, 4, 1600319-1600328. [15]
- Cui S., Wen Z., Mattson E. C., Mao S., Chang J., Weinert M., Hirschmugl C. J., Gajdardziska-Josifovska M., Chen J., J. Mater. Chem. A. 2013, 1, 4462-4467. [16]
- [17] Huang L., Wang Z., Zhang J., Pu J., Lin Y., Xu S., Shen L., Chen Q., Shi W., ACS Appl. Mater. Inter. 2014, 6, 7426-7433.
- [18] Mao S., Cui S., Lu G., Yu K., Wen Z., Chen J., J. Mater. Chem. 2012, 22, 11009-11013.
- [19] Ammu S., Dua V., Agnihotra S. R., Surwade S. P., Phulgirkar A., Patel S., Manohar S. K., J. Am. Chem. Soc. 2012, 134, 4553-4556.
- [20] Li J., Lu Y. J., Ye Q., Cinke M., Han J., Meyyappan M., Nano Lett. 2003, 3, 929-933.
- [21] Zanolli Z., Leghrib R., Felten A., Pireaux J.-J., Llobet E., Charlier J.-C., ACS Nano 2011, 5, 4592-4599.
- [22] Lu G., Ocola L. E., Chen J., Adv. Mater. 2009, 21, 2487-2491.
- [23] Law M., Kind H., Messer B., Kim F., Yang P. D., Angew. Chem. Int. Ed. 2002, 41, 2405-2408.
- [24] Yu H., Yang T., Wang Z., Li Z., Zhao Q., Zhang M., Sensor. Actuat. B-Chem. 2018, 258, 517-526.
- Hoffmann M. W. G., Daniel Prades J., Mayrhofer L., Hernandez-Ramirez F., Jaervi T. T., Moseler M., Waag A., Shen H., Adv. Funct. Mater. 2014, 24, 595-602. [25]
- [26] Meng L., Xu Q., Sun Z., Li G., Bai S., Wang Z., Qin Y., Mater. Lett. 2018, 212, 296-298.
- Fan S.-W., Srivastava A. K., Dravid V. P., Sensor. and Actuat. B-Chem. 2010, 144, 159-163. [27]
- [28] Zhang C., Geng X., Liao H., Li C.-J., Debliquy M., Sensor. Actuat. B-Chem. 2017, 242, 102-111.
- Geng X., Zhang C., Luo Y., Liao H., Debliquy M., Ceram. Int. 2017, 43, 5990-5998. [29]
- [30] Xia Y., Wang J., Xu J.-L., Li X., Xie D., Xiang L., Komarneni S., ACS Appl. Mater. Inter. 2016, 8, 35454-35463.
- Zhang Q., Xie G., Xu M., Su Y., Tai H., Du H., Jiang Y., Sensor. Actuat. B-Chem. 2018, 259, 269-281. [31]
- Yang Z., Guo L., Zu B., Guo Y., Xu T., Dou X., Adv. Optical Mater. 2014, 2, 738-745. [32]
- [33] Park S., An S., Mun Y., Lee C., ACS Appl. Mater. Inter. 2013, 5, 4285-4292.
- Lu G., Xu J., Sun J., Yu Y., Zhang Y., Liu F., Sensor. Actuat. B-Chem. 2012, 162, 82-88. [34]
- Chen R., Wang J., Xia Y., Xiang L., Sensor. Actuat. B-Chem. 2018, 255, 2538-2545. [35]
- [36] Cui S., Wen Z., Huang X., Chang J., Chen J., Small 2015, 11, 2305-2313.
- Wang J., Li X., Xia Y., Komarneni S., Chen H., Xu J., Xiang L., Xie D., ACS Appl. Mater. Inter. 2016, 8, 8600-8607. [37]
- Gaiardo A., Fabbri B., Giberti A., Guidi V., Bellutti P., Malagu C., Valt M., Pepponi G., Gherardi S., Zonta G., Martucci A., Sturaro M., Landini N., Sensor. Actuat. B-Chem. 2016, [38]
- [39] Laminack W. I., Gole J. L., Adv. Funct. Mater. 2013, 23, 5916-5924.
- [40] Mane A. T., Navale S. T., Sen S., Aswal D. K., Gupta S. K., Patil V. B., Org. Electron. 2015, 16, 195-204.
- [41] Su P.-G., Peng S.-L., Talanta. 2015, 132, 398-405.

237 1085-1094

- [42] Mane A. T., Navale S. T., Patil V. B., Org. Electron. 2015, 19, 15-25.
- [43] Nalage S. R., Mane A. T., Pawar R. C., Lee C. S., Patil V. B., Ionics. 2014, 20, 1607-1616.
- [44] Gu F., Nie R., Han D., Wang Z., Sensor. Actuat. B-Chem. 2015, 219, 94-99.
- Xu X., Wang D., Wang W., Sun P., Ma J., Liang X., Sun Y., Ma Y., Lu G., Sensor. Actuat. B-Chem. 2012, 171, 1066-1072. [45]
- [46] Late D. J., Huang Y.-K., Liu B., Acharya J., Shirodkar S. N., Luo J., Yan A., Charles D., Waghmare U. V., Dravid V. P., Rao C. N. R., ACS Nano 2013, 7, 4879-4891.
- Xu T., Pei Y., Liu Y., Wu D., Shi Z., Xu J., Tian Y., Li X., J. Alloy. Compd. 2017, 725, 253-259. [47]
- [48] He Q., Zeng Z., Yin Z., Li H., Wu S., Huang X., Zhang H., Small 2012, 8, 2994-2999.
- [49] Li H.-Y., Yoon J.-W., Lee C.-S., Lim K., Yoon J.-W., Lee J.-H., Sensor. Actuat. B-Chem. 2018, 255, 2963-2970.
- [50] Cha J.-H., Choi S.-J., Yu S., Kim I.-D., J. Mater. Chem. A. 2017, 5, 8725-8732.
- [51] Ko K. Y., Song J.-G., Kim Y., Choi T., Shin S., Lee C. W., Lee K., Koo J., Lee H., Kim J., Lee T., Park J., Kim H., ACS Nano 2016, 10, 9287-9296.
- [52] Liu H., Li M., Voznyy O., Hu L., Fu Q., Zhou D., Xia Z., Sargent E. H., Tang J., Adv. Mater. 2014, 26, 2718-2724.
- Fahad H. M., Shiraki H., Amani M., Zhang C., Hebbar V. S., Gao W., Ota H., Hettick M., Kiriya D., Chen Y.-Z., Chueh Y.-L., Javey A., Sci. Adv. 2017, 3, 1602557-1602565. [53]
- Park H., Jung H., Zhang M., Chang C. H., Ndifor-Angwafor N. G., Choa Y., Myung N. V., Nanoscale. 2013, 5, 3058-3062. [54]
- Cho S.-Y., Lee Y., Koh H.-J., Jung H., Kim J.-S., Yoo H.-W., Kim J., Jung H.-T., Adv. Mater. 2016, 28, 7020-7029. [55]
- Cui S., Pu H., Wells S. A., Wen Z., Mao S., Chang J., Hersam M. C., Chen J., Nat. Commun. 2015, 6, 8632-8641. [56]
- [57] Ghanbari K., Synthetic Met. 2014, 195, 234-240.
- Zhang Y., Kim J. J., Chen D., Tuller H. L., Rutledge G. C., Adv. Funct. Mater. 2014, 24, 4005-4014. [58]
- Jalil A. R., Chang H., Bandari V. K., Robaschik P., Zhang J., Siles P. F., Li G., Buerger D., Grimm D., Liu X., Salvan G., Zahn D. R. T., Zhu F., Wang H., Yan D., Schmidt O. G., Adv. [59] Mater. 2016. 28. 2971-2977.
- [60] Ji S., Wang H., Wang T., Yan D., Adv. Mater. 2013, 25, 1755-1760.
- Zhuang Y., Yuan W., Qian L., Chen S., Shi G., Phys. Chem. Chem. Phys. 2017, 19, 12876-12881. [61]
- [62] Wang B., Zuo X., Wu Y., Chen Z., He C., Duan W., Sensor. Actuat. B-Chem. 2011, 152, 191-195.
- [63] Han D., Yang W., Gu F., Wang Z., Sensor. Actuat. B-Chem. 2018, 255, 1139-1146.
- Navale S. T., Mane A. T., Khuspe G. D., Chougule M. A., Patil V. B., Synthetic Met. 2014, 195, 228-233. [64]
- [65] Jiang H., Cao L., Li Y., Li W., Ye X., Deng W., Jiang X., Wang G., Xu G., Chem.Commun. 2020, 56, 5366-5369.
- Yuan W., Huang L., Zhou Q., Shi G., ACS Appl. Mater. Inter. 2014, 6, 17003-17008. [66]
- [67] Randeniya L. K., Shi H., Barnard A. S., Fang J., Martin P. J., Ostrikov K., Small 2013, 9, 3993-3999.
- Paul R. K., Badhulika S., Saucedo N. M., Mulchandani A., Anal. Chem. 2012, 84, 8171-8178. [68]
- Su P.-G., Shieh H.-C., Sensor. Actuat. B-Chem. 2014, 190, 865-872. [69]
- Tjoa V., Jun W., Dravid V., Mhaisalkar S., Mathews N., J. Mater. Chem. 2011, 21, 15593-15599. [70]
- [71] Chia L. S., Du Y. H., Palale S., Lee P. S., ACS Omega. 2019, 4, 10388-10395.
- [72] Kumar R., Jenjeti R. N., Sampath S., ACS Sensors. 2020, 5, 404-411.
- [73] Cho B., Kim A. R., Park Y., Yoon J., Lee Y.-J., Lee S., Yoo T. J., Kang C. G., Lee B. H., Ko H. C., Kim D.-H., Hahm M. G., ACS Appl. Mater. Inter. 2015, 7, 2952-2959.
- Sharma A., Tomar M., Gupta V., J. Mater. Chem. 2012, 22, 23608-23616. [74]
- Sun Q., Hao J., Zheng S., Wan P., Li J., Zhang D., Li Y., Wang T., Wang Y., Nanotechnology 2020, 31, 425502-425511. [75]

ARTICLE

- [76] Liu L., Ikram M., Ma L., Zhang X., Lv H., Ullah M., Khan M., Yu H., Shi K., J. Hazard. Mater. **2020**, 393, 122325-122335.
- [77] Abbas A. N., Liu B., Chen L., Ma Y., Cong S., Aroonyadet N., Koepf M., Nilges T., Zhou C., ACS Nano 2015, 9, 5618-5624.
- [78] Sangeetha M., Madhan D., Opt. Laser Technol. 2020, 127, 106193-106203.
- [79] Wang Y., Liu D., Yin J., Shang Y., Du J., Kang Z., Wang R., Chen Y., Sun D., Jiang J., Chem. Commun. 2020, 56, 703-706.
- [80] Niu F., Shao Z.-W., Gao H., Tao L.-M., Ding Y., Sensor. Actuat. B-Chem. 2021, 328, 129005.
- [81] Gomez-Navarro C., Weitz R. T., Bittner A. M., Scolari M., Mews A., Burghard M., Kern K., Nano Lett. 2009, 7, 3499–3503.
- [82] Wu J., Wu Z., Ding H., Yang X., Wei Y., Xiao M., Yang Z., Yang B.-R., Liu C., Lu X., Qiu L., Wang X., ACS Sensors 2019, 4, 1889-1898.
- [83] Jiang W., Chen X., Wang T., Li B., Zeng M., Yang J., Hu N., Su Y., Zhou Z., Yang Z., Rsc Adv. 2021, 11, 5618-5628.
- [84] Jiang W., Wang T., Chen X., Li B., Zeng M., Hu N., Su Y., Zhou Z., Zhang Y., Yang Z., Phys. Chem. Chem. Phys. 2020, 22, 18499-18506.
- [85] Khan M. A. H., Thomson B., Debnath R., Rani A., Motayed A., Rao M. V., Nanotechnology. 2020, 31, 155504-155515.
- [86] Guo J., Wen R., Zhai J., Wang Z. L., Sci. Bull. 2019, 64, 128-135.
- [87] Wang J., Shen Y., Li X., Xia Y., Yang C., Sensor. Actuat. B-Chem. 2019, 298, 126858-126867.
- [88] Zhou Y., Gao C., Guo Y., J. Mater. Chem. A. **2018**, *6*, 10286-10296.
- [89] Wu T., Wang Z., Tian M., Miao J., Zhang H., Sun J., Sensor. Actuat. B-Chem. 2018, 259, 526-531.
- [90] Giampiccolo A., Tobaldi D. M., Leonardi S. G., Murdoch B. J., Seabra M. P., Ansell M. P., Neri G., Ball R. J., Appl. Catal., B. Environ. 2019, 243, 183-194.
- [91] Liu B., Luo Y., Li K., Wang H., Gao L., Duan G., Adv. Mater. Interfaces. 2019, 6.
- [92] Wang Z., Zhang T., Zhao C., Han T., Fei T., Liu S., Lu G., J. Colloid Interface Sci. 2018, 514, 599-608.
- [93] Liu Y., Gao X., Li F., Lu G., Zhang T., Barsan N., Sens. Actuators B-Chem. 2018, 260, 927-936.
- [94] Wang Z., Men G., Zhang R., Gu F., Han D., Sens. Actuators, B-Chem. 2018, 263, 218-228.
- [95] Wu E., Xie Y., Yuan B., Zhang H., Hu X., Liu J., Zhang D., ACS Sensors 2018, 3, 1719-1726.
- [96] Aziz A., Tiwale N., Hodge S. A., Attwood S. J., Divitini G., Welland M. E., ACS Appl. Mater. Inter. 2018, 10, 43817-43823.

Journal Name