Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supplementary Information for

Cross-linking Structure of Self-aligned P-Type SnS Nanoplates for Highly Sensitive NO₂ Detection at Room Temperature

Young Geun Song,^{a,#} In-Hwan Baek,^{a,b,#} Jae-Gyun Yim,^{a,c} Taeyong Eom,^d Taek-Mo Chung,^d Chul-Ho Lee,^c Cheol Seong Hwang,^b Chong-Yun Kang,^{a,c,*} and Seong Keun Kim^{a,c,*}

^aElectronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02791, South Korea

^bDepartment of Materials Science and Engineering and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, South Korea

[°]KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea

^dDivision of Advanced Materials, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea

Figure S1. Raman spectrum of SnS nanoplates grown on SiO₂ nanorods.

Figure S2. (a) Energy-dispersive spectra of SnS nanoplates formed on SiO_2 nanorods obtained from SEM analysis. Variation in the peak intensity of (b) Sn and (c) S elements obtained from wavelength-dispersive x-ray fluorescence.

Figure S3. (a) Plan-view and (b) cross-sectional SEM images of SnS nanoplates on SiO₂ nanorods. (c) Plan-view and (d) cross-sectional SEM images of the structure after solvent cleaning using acetone, ethanol, and deionized water.

Figure S4. Plan-view SEM images of ALD-grown SnS on Al₂O₃ for (a) 0, (b) 25, (c) 50, (d) 85, and (e) 150 cycles.

Note S1

The resistance of the single SnS grain in the absence and presence of NO₂ can be expressed as $\frac{R_{core} \times R_{HAL}}{R_{core} + R_{HAL}}$ and $\frac{R_{core} \times (R_{HAL} - \Delta R_{HAL})}{R_{core} + (R_{HAL} - \Delta R_{HAL})}$, respectively, because R_{HAL} and R_{core} are connected in parallel. The R_{core} value is assumed to be a constant since the change in the R_{core} value under exposure to NO₂ is negligible. The SnS sensor was considered in the form of n grains connected in series. R_a and R_g of the SnS sensor is regarded as n times the resistance of each SnS grain.

Considering the resistance values, the response of the SnS sensor to NO₂ is developed as follows;

$$Response = \frac{R_a}{R_g} - 1 = \frac{\left(\frac{R_{core} \times R_{HAL}}{R_{core} + R_{HAL}}\right) \times \varkappa}{\left(\frac{R_{core} \times (R_{HAL} - \Delta R_{HAL})}{R_{core} + (R_{HAL} - \Delta R_{HAL})}\right) \times \varkappa} - 1$$
$$= \frac{\varkappa}{\varkappa}_{core} \times R_{HAL} (R_{core} + R_{HAL} - \Delta R_{HAL})}{\varkappa} - 1$$
$$= \frac{R_{core} \Delta R_{HAL}}{\varkappa}_{core} (R_{HAL} - \Delta R_{HAL}) (R_{core} + R_{HAL})} - 1$$
$$= \frac{R_{core} \Delta R_{HAL}}{(R_{HAL} - \Delta R_{HAL}) (R_{core} + R_{HAL})}$$
$$= \frac{1}{\left(\frac{R_{HAL}}{\Delta R_{HAL}} - 1\right) \left(1 + \frac{R_{HAL}}{R_{core}}\right)}$$

Figure S5. I-V curve of SnS nanoplates (75 ALD cycles) grown on SiO₂ nanorods.

Figure S6. Cross-sectional SEM images of SnS grown on SiO_2 for (a) 0, (b) 25, (c) 50, (d) 85, and (e) 150 cycles.

Figure S7. Plan-view SEM images of SnS grown on planar SiO_2 for (a) 25, (c) 85, and (e) 150 cycles.

Figure S8. Variation in the resistance of the SnS planar film structured sensor grown for 900 cycles to 5 ppm NO₂.

Figure S9. Variations in (a) the resistance and (b) the response of the SnS nanoplates on SiO_2 nanorods to 5 ppm NO₂ in the RH range from 0 to 80%. (c) Variation in the recovery percentage of the resistance after 500 s from the start of recovery.

Figure S10. (a) Variation in the base resistance of 15 different SnS sensors grown on SiO₂ nanorods for 75 ALD cycles. (b) Variations in the resistance and (c) the response of five different SnS sensors under ambient condition of 60% RH at room temperature upon exposure to 5 ppm NO₂.

Figure S11. XPS spectra of (a) Sn 3d and (b) S 2p core levels in SnS nanoplates grown on SiO_2 nanorods before and after exposure to 100 ppm NO₂ for 5 min.

Figure S12. Variation in the response of the SnS sensor upon exposure to various gases (NO₂, C₇H₈, H₂S, C₂H₅OH, NH₃, SO₂, CH₃COOCH₃, and CO) with a concentration of 5 ppm.