Supporting Information for

Dual transition metal atoms embedded \mathbf{N}-doped graphene for electrochemical nitrogen fixation under ambient conditions

Yi Liu, Bingyi Song, Chun-Xiang Huang and Li-Ming Yang*

Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. (email: Lmyang.uio@gmail.com, Lmyang@hust.edu.cn)

Table S1. Gibbs free energy changes of N_{2} adsorption on M_{2}-DV series.
Table S2. The $\mathrm{N}-\mathrm{N}$ bond lengths of N_{2} adsorption on M_{2} - DV series.
Table S3. Gibbs free energy changes of N_{2} adsorption on M_{2}-TV series.
Table S4. The $\mathrm{N}-\mathrm{N}$ bond lengths of N_{2} adsorption on $\mathrm{M}_{2}-\mathrm{TV}$ series.
Table S5. Gibbs free energy changes of N_{2} adsorption on $\mathrm{M}_{2}-\mathrm{QV}$ series.
Table S6. The $\mathrm{N}-\mathrm{N}$ bond lengths of N_{2} adsorption on $\mathrm{M}_{2}-\mathrm{QV}$ series.
Table S7. Gibbs free energy changes of the first protonation step for M_{2}-DV series.
Table S8. Gibbs free energy changes of the last (sixth) protonation step for $\mathrm{M}_{2}-\mathrm{DV}$ series.
Table S9. Gibbs free energy changes of the first protonation step for M_{2}-TV series.
Table S10. Gibbs free energy changes of the last (sixth) protonation step for M_{2}-TV series.
Table S11. Gibbs free energy changes of the first protonation step for $\mathrm{M}_{2}-\mathrm{QV}$ series.
Table S12. Gibbs free energy changes of the last (sixth) protonation step for $\mathrm{M}_{2}-\mathrm{QV}$ series.
Figure S1. Gibbs free energy diagrams for NRR on $\mathrm{V}_{2}-\mathrm{TV}, \mathrm{Cr}_{2}-\mathrm{TV}, \mathrm{Fe}_{2}-\mathrm{QV}, \mathrm{Mo}_{2}-\mathrm{TV}, \mathrm{Rh}_{2}-\mathrm{TV}$, $\mathrm{Os}_{2}-\mathrm{DV}$ and $\mathrm{Ir}_{2}-\mathrm{TV}$ catalysts.
Table S13. On $\mathrm{Cr}_{2}-\mathrm{TV}, \mathrm{Mo}_{2}-\mathrm{TV}$ and $\mathrm{Ir}_{2}-\mathrm{TV}$ catalysts, the evolution length of $\mathrm{N}-\mathrm{N}$ bond through eight different reaction pathways.
Table S14. Onset potential of NRR and the corresponding magnetic moment for catalysts that meet three screening procedures.
Table S15. The charge variations (the Bader charge variation of each intermediate between two adjacent steps) on the Cr_{2}-TV catalyst for NRR through (a) distal and (b) distal-alternating pathway.
Table S16. The charge variations (the Bader charge variation of each intermediate between two adjacent steps) on the Mo_{2}-TV catalyst for NRR through (c) consecutive pathway, (d) distal pathways, (e) enzymatic-consecutive pathway.
Table S17. The charge variations (the Bader charge variation of each intermediate between two adjacent steps) on the Ir_{2}-TV catalyst for NRR through (f) consecutive-enzymatic pathway, (g) enzymatic-consecutive pathway and (h) consecutive-enzymatic pathway.
Table S18. The comparison of the catalytic performance between $U_{\text {onset }}-H E R$ and $U_{\text {onset }}-N R R$.
Figure S2. (a) The evolution curve of temperature and energy versus the simulation time for the Cr_{2}-TV catalyst. (b) The top and side views of the snapshots of $\mathrm{Cr}_{2}-\mathrm{TV}$ catalyst before and after AIMD simulations. The simulations were performed at 600 K for 10 ps with a time step of 2 fs .

Figure S3. (a) The evolution curve of temperature and energy versus the simulation time for the $\mathrm{Mo}_{2}-\mathrm{TV}$ catalyst. (b) The top and side views of the snapshots of $\mathrm{Mo}_{2}-\mathrm{TV}$ catalyst before and after AIMD simulations. The simulations were performed at 600 K for 10 ps with a time step of 2 fs .
Figure S3. (a) The evolution curve of temperature and energy versus the simulation time for the $\mathrm{Mo}_{2}-\mathrm{TV}$ catalyst. (b) The top and side views of the snapshots of $\mathrm{Mo}_{2}-\mathrm{TV}$ catalyst before and after AIMD simulations. The simulations were performed at 600 K for 10 ps with a time step of 2 fs .
Figure S4. (a) The evolution curve of temperature and energy versus the simulation time for the Ir_{2}-TV catalyst. (b) The top and side views of the snapshots of $\mathrm{Ir}_{2}-\mathrm{TV}$ catalyst before and after AIMD simulations. The simulations were performed at 600 K for 10 ps with a time step of 2 fs .
Table S19. The structure, lattice constant, space group and point group of catalysts.

Table S1. Gibbs free energy changes of N_{2} adsorption on M_{2}-DV series.

$\Delta \mathrm{G}(\mathrm{eV})$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}{ }^{\text {d }}$	$\left(M^{*}-M^{*}\right)_{s}^{\text {R }}$	(${ }^{*}$-M) ${ }_{\text {d }}^{\text {L }}$	(M-M*) ${ }_{\text {c }}^{\text {R }}$	$\left(M^{*}-M^{*}\right)_{s}$	$\left(M^{*}-\mathrm{M}\right)_{\mathrm{E}}^{\text {L }}$	(M-M*) ${ }_{\text {E }}^{\text {R }}$
Sc2-DV	-1.42	1	1	1	1	1	1
Tiz-DV	-2.23	1	1	1	1	1	1
V_{2}-DV	-1.83	1	1	1	1	1	1
Cr2-DV	1	-1.11/	1	1	1	-1.24	1
Mn2-DV	-0.28	,	1	1	1	-0.35	-0.23
Fe_{2}-DV	-0.11		1	1	-0.11	-0.30	1
Co2-DV	1	1	1	1	1	-0.51	
Ni_{2}-DV	1	1	1	1	1	-0.13	1
Cu2-DV	1	1	1	1	1	0.08	1
Zn 2 -DV	1	1	1	1	1	0.06	1
Y_{2}-DV	-1.04	1	1	1	1	1	1
Zr2-DV	1	-2.30	1	1	1	1	1
Nb 2 -DV	-2.10	1	1	1	1	1	1
Mo2-DV	-0.57	1	1	1	1	-0.73	1
Tc2-DV	1	1	1	1	1	-0.24	1
Ru2-DV	1	1		-0.19	1		-0.87
Rh2-DV	1	1	-0.23		1	-0.73	
Pd2-DV	1	1	1	1	1	-0.31	1
Ag 2 2-DV $^{\text {d }}$	1	1	1	1	0.38	-0.04	1
Cd_{2}-DV	1	1	1	1	0.28	1	1
Lu2-DV	-0.81	1	1	1	1	-0.13	1
Hf_{2}-DV	-2.31	1	1	1	1	-0.66	1
Ta2-DV	1	-2.35	1	1	1	/	1
W_{2}-DV	-1.49	1	1	1	1	-1.27	1
Re2-DV	-0.58	1	1	-0.56	1	-0.93	1
Os2-DV		1	1	1	-0.88	-1.17	1
Ir2-DV	1	1	1	1	1	-0.92	1
Pt2-DV	1	1	0.21	1	1	1	,
Au_{2}-DV	1	1	1	1	0.45	1	1

Notes: / means that the configuration of the N_{2} adsorption doesn't exit. An asterisk * denotes the active site on the surface of catalysts that the adsorbed N_{2} connected to. The M means the transition metal atom ($3 \mathrm{~d}, 4 \mathrm{~d}$ and 5d series). The subscripts E and S represent the end-on and side-on configurations, respectively. The superscripts L and R mean that adsorbed N_{2} molecules are closer to the left and right sides of M_{2}, respectively.

Table S2. The $\mathrm{N}-\mathrm{N}$ bond lengths of N_{2} adsorption on M_{2} - DV series.

$\Delta \mathrm{G}(\mathrm{eV})$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{L}}$	$\left(M^{*}-M^{*}\right)_{s}^{\text {R }}$	(${ }^{*}$ - $\mathrm{M}^{\text {L }}$	(M-M*) ${ }_{\text {c }}^{\text {R }}$	$\left(M^{*}-M^{*}\right)_{s}$	$\left(M^{*}-\mathrm{M}\right)_{\mathrm{E}}^{\text {L }}$	(M-M*) ${ }_{\text {E }}^{\text {R }}$
Sc2-DV	1.207	,	1	1	/	1	/
Tiz-DV	1.225	1	1	1	1	1	1
V_{2}-DV	1.230	1	1	1	1	1	1
Cr2-DV	1	1.199	1	1	1	1.157	1
Mn2-DV	1.195	1	1	1	1	1.155	1.136
Fe_{2}-DV	1.175	1	1	1	1.194	1.137	1
Co_{2}-DV	1	1	1	1	1	1.139	1
$\mathrm{Ni}_{2}-\mathrm{DV}$	1	1	1	1	1	1.131	1
Cu2-DV	1	1	1	1	1	1.124	1
Zn 2 -DV	1	1	1	1	1	1.125	1
Y_{2}-DV	1.211		1	1	1	1	1
Zr 2 -DV	1	1.238	1	1	1	1	1
Nb_{2}-DV	1.243	1	1	1	1	1	1
Mo2-DV	1.302	1	1	1	1	1.155	1
Tc2-DV	1	1	1	1	1	1.131	1
Ru2-DV	1	1	1	1.159	1	1	1.137
Rh2-DV	1	1	1.153	1	1	1.131	1
Pd2-DV	1	1	1	1	1	1.126	1
Ag_{2}-DV	1	1	1	1	1.144	1.120	1
Cd2-DV	1	1	1	1	1.158	1	1
Lu2-DV	1.217	1	1	1	1	1.140	1
Hf_{2}-DV	1.252	1	1	1	1	1.150	1
Ta2-DV	1	1.272	1	1	1	1	1
W_{2}-DV	1.374	1	1	1	1	1.155	1
Re2-DV	1.281	1	1	1.190	1	1.147	1
Os2-DV	1	1	1	1	1.217	1.144	1
Ir2-DV	1	1	1	1	1	1.136	1
Pt2-DV	1	1	1.162	1	1	1	,
Au_{2}-DV	1	1	1	1	1.173	1	1

Notes: / means that the configuration of the N_{2} adsorption doesn't exit. An asterisk * denotes the active site on the surface of catalysts that the adsorbed N_{2} connected to. The M means the transition metal atom ($3 \mathrm{~d}, 4 \mathrm{~d}$ and 5d series). The subscripts E and S represent the end-on and side-on configurations, respectively. The superscripts L and R mean that adsorbed N_{2} molecules are closer to the left and right sides of M_{2}, respectively.

Table S3. Gibbs free energy changes of N_{2} adsorption on $\mathrm{M}_{2}-\mathrm{TV}$ series.

$\Delta \mathrm{G}(\mathrm{eV})$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{L}}$	$\left(M^{*}-M^{*}\right)_{s}^{R}$	$\left(\mathrm{M}^{*}-\mathrm{M}\right)_{\mathrm{s}}^{\mathrm{L}}$	$\left(\mathrm{M}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{R}}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}$	$\left(\mathrm{M}^{*}-\mathrm{M}\right)_{\mathrm{E}}^{\mathrm{L}}$	$(\mathrm{M}-\mathrm{M} *)_{\mathrm{E}}^{\mathrm{R}}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{E}}$
Sc_{2}-TV	-1.70	-1.45	-0.52	1	1	1	1	1
Ti2-TV	-1.92	-1.67	-0.73	1	1	1	1	1
V_{2}-TV	1	1	1	1	-0.08	1	-0.21	1
$\mathrm{Cr}_{2}-\mathrm{TV}$	1	-0.22	1	-0.30	1	-0.12	-0.55	1
Ni2-TV	1	1	1	1	1	1	-0.84	1
Cu_{2}-TV	1	1	1	-0.39	1	1	-0.83	1
Y_{2}-TV	-1.10	-1.24	1	-0.35	1	1	-0.28	1
Zr_{2}-TV	-2.79	-2.95	1	-1.82	1	1	/	1
Nb_{2}-TV	1	-1.41	1	-0.58	1	1	-0.96	1
Moz-TV	-0.07	1	-0.29	1	1	1	-0.40	1
Tc2-TV	1	1	1	1	1	-0.34	/	1
Ru2-TV	1	1	1	-0.49	1	1	-0.91	0.45
Rh2-TV	1	1	-0.25	1	1	-0.94	1	1
Pd_{2}-TV	1	1	-0.54	1	1	-0.86	1	1
Lu2-TV	-0.72	-0.54	0.13	1	1	0.08	1	1
Hf_{2}-TV	-1.95	-1.70	-0.95	1	1	-0.88	1	1
Ta2-TV	-2.08	-2.40	1	1	1	-0.57	1	1
W_{2}-TV	-1.52	-1.30	1	1	1	-1.01	-0.79	1
Re_{2}-TV	1	1	1	1	-0.11	-0.40	1	1
Os2-TV	0.68	1	-0.62	1	1	-1.32	1	1
Ir_{2}-TV	1	1	1	-0.62	1	/	-1.00	1
Pt_{2}-TV	1	1	-0.90	1	1	-1.44	1	1

Notes: / means that the configuration of the N_{2} adsorption doesn't exit. An asterisk * denotes the active site on the surface of catalysts that the adsorbed N_{2} connected to. The M means the transition metal atom ($3 \mathrm{~d}, 4 \mathrm{~d}$ and 5 d series). The subscripts E and S represent the end-on and side-on configurations, respectively. The superscripts L and R mean that adsorbed N_{2} molecules are closer to the left and right sides of M_{2}, respectively.

Table S4. The $\mathrm{N}-\mathrm{N}$ bond lengths of N_{2} adsorption on $\mathrm{M}_{2}-\mathrm{TV}$ series.

Bond of length (\AA)	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{L}}$	$\left(M^{*}-M^{*}\right)_{s}^{R}$	$\left(\mathrm{M}^{*}-\mathrm{M}\right)_{\mathrm{s}}^{\mathrm{L}}$	$\left(\mathrm{M}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{R}}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}$	$\left(\mathrm{M}^{*}-\mathrm{M}\right)_{\mathrm{E}}^{\mathrm{L}}$	$\left(\mathrm{M}-\mathrm{M}^{*}\right)_{\mathrm{E}}^{\mathrm{R}}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{E}}$
Sc_{2}-TV	1.224	1.216	1.173	1	1	1	1	1
Ti2-TV	1.247	1.260	1.189	1	1	1	1	1
V_{2}-TV	1	/	1	1	1.215	1	1.139	1
$\mathrm{Cr}_{2}-\mathrm{TV}$	1	1.213	1	1.18	1	1.144	1.135	1
Ni2-TV	1	1	1	/	1	1	1.138	1
Cu_{2}-TV	1	1	1	1.152	1	1	1.131	1
Y_{2}-TV	1.216	1.225	1	1.175	1	1	1.143	1
Zr_{2}-TV	1.272	1.267	1	1.188	1	1	1	1
Nb_{2}-TV	/	1.283	1	1.180	1	1	1.145	1
Moz-TV	1.239	1	1.156	/	1	1	1.133	1
Tc2-TV	1	1	1	1	1	1.138	1	1
Ru2-TV	1	1	1	1.187	1	1	1.139	1.178
Rh2-TV	1	1	1.160	1	1	1.133	1	1
Pd_{2}-TV	1	1	1.159	1	1	1.130	1	1
Lu2-TV	1.236	1.225	1.184	1	1	1.135	1	1
Hf_{2}-TV	1.284	1.279	1.197	1	1	1.152	1	1
Ta2-TV	1.258	1.299	1	1	1	1.143	1	1
$\mathrm{W}_{2}-\mathrm{TV}$	1.346	1.300	1	1	1	1.146	1.147	1
Re2-TV	1	1	1	1	1.259	1.145	/	1
Os2-TV	1.244	/	1.195	1	/	1.142	1	1
Ir_{2}-TV	1	1	/	1.183	1	/	1.138	1
Pt_{2}-TV	1	1	1.182	1	1	1.133	1	1

Notes: / means that the configuration of the N_{2} adsorption doesn't exit. An asterisk $*$ denotes the active site on the surface of catalysts that the adsorbed N_{2} connected to. The M means the transition metal atom ($3 \mathrm{~d}, 4 \mathrm{~d}$ and 5d). The subscripts E and S represent the end-on and side-on configurations, respectively. The superscripts L and R mean that adsorbed N_{2} molecules are closer to the left and right sides of M_{2}, respectively.

Table S5. Gibbs free energy changes of N_{2} adsorption on $\mathrm{M}_{2}-\mathrm{QV}$ series.

$\Delta \mathrm{G}(\mathrm{eV})$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{S}}^{\mathrm{L}}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{R}}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}$	$\left(\mathrm{M}^{*}-\mathrm{M}_{\mathrm{E}}^{\mathrm{L}}\right.$	$\left(\mathrm{M}_{\left.-\mathrm{M}^{*}\right)_{\mathrm{E}}^{\mathrm{R}}}\right.$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{E}}$
$\mathrm{V}_{2}-\mathrm{QV}$	$/$	-0.33	$/$	$/$	0.20	$/$
$\mathrm{Cr}_{2}-\mathrm{QV}$	0.29	$/$	$/$	-0.27	$/$	$/$
$\mathrm{Mn}_{2}-\mathrm{QV}$	$/$	$/$	0.41	-0.63	$/$	$/$
$\mathrm{Fe}_{2}-\mathrm{QV}$	$/$	$/$	$/$	$/$	-0.20	-0.10
$\mathrm{Co} 2-\mathrm{QV}$	$/$	$/$	0.26	$/$	$/$	-0.32
$\mathrm{Y}_{2}-\mathrm{QV}$	$/$	-1.23	$/$	$/$	$/$	$/$
$\mathrm{Nb}_{2}-\mathrm{QV}$	-2.04	$/$	$/$	$/$	$/$	$/$
$\mathrm{Mo}_{2}-\mathrm{QV}$	$/$	$/$	$/$	0.19	0.10	$/$
$\mathrm{Tc}_{2}-\mathrm{QV}$	$/$	$/$	$/$	0.01	0.01	$/$
$\mathrm{Lu}_{2}-\mathrm{QV}$	-0.76	$/$	$/$	$/$	0.07	$/$
$\mathrm{Hf}_{2}-\mathrm{QV}$	$/$	-2.13	$/$	$/$	$/$	$/$
$\mathrm{Ta}_{2}-\mathrm{QV}$	-2.59	$/$	$/$	$/$	$/$	$/$
$\mathrm{W}_{2}-\mathrm{QV}$	$/$	-2.00	$/$	$/$	-1.15	$/$

Notes: / means that the configuration of the N_{2} adsorption doesn't exit. An asterisk * denotes the active site on the surface of catalysts that the adsorbed N_{2} connected to. The M means the transition metal atom ($3 \mathrm{~d}, 4 \mathrm{~d}$ and 5d series). The subscripts E and S represent the end-on and side-on configurations, respectively. The superscripts L and R mean that adsorbed N_{2} molecules are closer to the left and right sides of M_{2}, respectively.

Table S6. The $\mathrm{N}-\mathrm{N}$ bond lengths of N_{2} adsorption on $\mathrm{M}_{2}-\mathrm{QV}$ series.

Bond of length (\AA)	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{S}}^{\mathrm{L}}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{S}}^{\mathrm{R}}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{S}}$	$\left(\mathrm{M}^{*}-\mathrm{M}\right)_{\mathrm{E}}^{\mathrm{L}}$	$\left(\mathrm{M}_{-} \mathrm{M}^{*}\right)_{\mathrm{E}}^{\mathrm{R}}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{E}}$
$\mathrm{V}_{2}-\mathrm{QV}$	$/$	1.240	$/$	$/$	1.136	$/$
$\mathrm{Cr}_{2}-\mathrm{QV}$	1.227	$/$	$/$	1.141	$/$	$/$
$\mathrm{Mn}_{2}-\mathrm{QV}$	$/$	$/$	1.197	1.184	$/$	$/$
$\mathrm{Fe}_{2}-\mathrm{QV}$	$/$	$/$	$/$	$/$	1.140	1.159
$\mathrm{Co}_{2}-\mathrm{QV}$	$/$	$/$	1.166	$/$	$/$	1.156
$\mathrm{Y}_{2}-\mathrm{QV}$	$/$	1.212	$/$	$/$	$/$	$/$
$\mathrm{Nb}_{2}-\mathrm{QV}$	1.259	$/$	$/$	$/$	$/$	$/$
$\mathrm{Mo}_{2}-\mathrm{QV}$	$/$	$/$	$/$	1.135	1.126	$/$
$\mathrm{Tc}_{2}-\mathrm{QV}$	$/$	$/$	$/$	1.128	1.127	$/$
$\mathrm{Lu}_{2}-\mathrm{QV}$	1.217	$/$	$/$	$/$	1.137	$/$
$\mathrm{Hf}_{2}-\mathrm{QV}$	$/$	1.255	$/$	$/$	$/$	$/$
$\mathrm{Ta}_{2}-\mathrm{QV}$	1.283		$/$	$/$	$/$	$/$
$\mathrm{W}_{2}-\mathrm{QV}$	$/$	1.298	$/$	$/$	1.173	$/$

Notes: / means that the configuration of the N_{2} adsorption doesn't exit. An asterisk $*$ denotes the active site on the surface of catalysts that the adsorbed N_{2} connected to. The M means the transition metal atom ($3 \mathrm{~d}, 4 \mathrm{~d}$ and 5d series). The subscripts E and S represent the end-on and side-on configurations, respectively. The superscripts L and R mean that adsorbed N_{2} molecules are closer to the left and right sides of M_{2}, respectively.

$\Delta \mathrm{G}(\mathrm{eV})$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{L}}$-a	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{L}}$-b	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{s}^{\mathrm{R}}-\mathrm{a}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{R}}-\mathrm{b}$	$\left(\mathrm{M}^{*}-\mathrm{M}\right)_{\mathrm{s}}^{\mathrm{L}}-\mathrm{a}$	$\left(\mathrm{M}^{*}-\mathrm{M}\right)_{s}^{\mathrm{L}}-\mathrm{b}$	$(\mathrm{M}-\mathrm{M} *)_{s}^{\mathrm{R}}-\mathrm{a}$	$\left(\mathrm{M}-\mathrm{M}^{*}\right)_{s}^{\mathrm{R}}-\mathrm{b}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}$	$\left(\mathrm{M}^{*}-\mathrm{M}\right)_{\mathrm{E}}^{\mathrm{L}} \mathrm{~L} \mathrm{c}$	$\left(\mathrm{M}-\mathrm{M}^{*}\right)_{\mathrm{E}}^{\mathrm{R}-\mathrm{C}}$
Sc2-DV	-0.14	0.85	1	1	1	1	1	1	1	1	1
Ti2-DV	0.10	0.91	1	1	1	1	1	1	1	1	1
V2-DV	0.37	0.08	1	1	1	1	1	1	1	1	1
Cr_{2}-DV	1	1	0.51	0.38	1	1	1	1	1	0.69	1
Mn_{2}-DV	0.30	0.36	1	1	1	1	1	1	1	0.44	0.32
Fe_{2}-DV	0.50	0.48	1	1	1	1	1	1	0.47	0.92	1
Co2-DV	1	1	1	1	1	1	1	1	1	0.95	1
Ni_{2}-DV	1	1	1	1	1	1	1	1	1	0.64	1
Y_{2}-DV	-0.30	0.72	1	1	1	1	1	1	1	1	1
Zr_{2}-DV	1	1	0.20	-0.10	1	1	1	1	1	1	1
Nb_{2}-DV	0.02	0.55	1	1	1	1	1	1	1	1	1
Mo2-DV	-0.05	-0.11	1	1	1	1	1	1	1	-0.06	1
Tc2-DV	1	1	1	1	1	1	1	1	1	1.10	1
Ru2-DV	1	1	1	1	1	1	0.77	0.89	1	1	1.06
Rh_{2}-DV	1	1	1	1	0.87	0.95	1	1	1	1.34	1
Pd_{2}-DV	1	1	1	1	1	1	1	1	1	0.99	1
Ag_{2}-DV	1	1	1	1	1	1	1	1	1	1.71	1
Lu2-DV	-0.38	0.68	1	1	1	1	1	1	1	-1.06	1
Hf_{2}-DV	-0.43	0.12	1	1	1	1	1	1	1	-2.07	1
Ta2-DV	1	1	0.60	-0.24	1	1	1	1	1	1	1
W_{2}-DV	-0.31	-1.63	1	1	1	1	1	1	1	-0.23	1
Re2-DV	-0.35	-0.49	1	1	1	1	0.86	0.38	1	0.43	
Os2-DV	1	1	1	1	1	1	1	1	-0.36	0.46	1
Ir2-DV	1	1	1	1	1	1	1	1	1	1.03	1

Table S7. Gibbs free energy changes of the first protonation step for M_{2}-DV series.

Notes: / means that the configuration of the first protonation step doesn't exit. An asterisk * denotes the active site on the surface of catalysts that the adsorbed N_{2} connected to. The M means the transition metal atom (3d, 4d and 5d series). The subscripts E and S represent the end-on and side-on configurations, respectively. The superscripts L and R mean that adsorbed N_{2} molecules are closer to the left and right sides of M_{2}, respectively. -a and -b mean that the first proton-electron pair attacks different N atom of adsorbed N_{2} molecule for side-on configuration, -c shows that the first proton-electron pair attacks distal N atom of adsorbed N_{2} molecule for end-on configuration.

Table S8. Gibbs free energy changes of the last (sixth) protonation step for M_{2}-DV series.

$\Delta \mathrm{G}(\mathrm{eV})$	C-S	$\mathrm{S}_{1}-\mathrm{S}_{1}$	$\mathrm{S}_{2}-\mathrm{S}_{2}$
$\mathrm{Sc}_{2}-\mathrm{DV}$	1.34	1	1
Ti2-DV	1.34	1	1
V_{2}-DV	1.32	1	1
$\mathrm{Cr}_{2}-\mathrm{DV}$	1.07	0.42	1
Mn2-DV	0.63	-0.34	1
$\mathrm{Fe}_{2}-\mathrm{DV}$	0.90	1	1
Co2-DV	1	1	1
Ni2-DV	1	1	1
Y_{2}-DV	1.76	1	1
Zr_{2}-DV	1.53	1.03	1
Nb_{2}-DV	1.55	1	1
Mo2-DV	1.24	0.33	1
Tc2-DV	1	1	1
Ru2-DV	1	1	1
Rh_{2}-DV	1	1	1
Pd_{2}-DV	1	1	1
Ag_{2}-DV	1	1	1
Lu2-DV	1.22	0.33	1
Hf_{2}-DV	1	1	1
Ta2-DV	1.10	0.91	1
$\mathrm{W}_{2}-\mathrm{DV}$	2.07	0.56	1
Re_{2}-DV	0.67	1	1
Os_{2}-DV	0.95	0.34	0.47
$\mathrm{Ir}_{2}-\mathrm{DV}$	1	1	1

Notes: / means that the configuration of the last protonation step doesn't exit. C and S mean that the adsorbates are located in the center and side of M_{2}. When adsorbates have two different configurations in two transition metal atoms, S_{1} and S_{2} are used to distinguish them.

Table S9. Gibbs free energy changes of the first protonation step for M_{2}-TV series

$\Delta \mathrm{G}(\mathrm{eV})$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{s}^{\mathrm{L}}$-a	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{L}}$-b	$\left(\mathrm{M}^{*}-\mathrm{M} *\right)_{\mathrm{s}}^{\mathrm{R}}$-a	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{s}^{\mathrm{R}}$-b	$\left(\mathrm{M}^{*}-\mathrm{M}\right)_{\mathrm{s}}^{\mathrm{L}}$-a	($\left.\mathrm{M}^{*}-\mathrm{M}\right)_{\mathrm{s}}^{\mathrm{L}}$-b	(M-M* ${ }_{s}^{\text {R }}$-a	$\left(\mathrm{M}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{R}}$-b	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{s}-\mathrm{a}$	$(\mathrm{M} *-\mathrm{M} *)_{s}-\mathrm{b}$	$\left(\mathrm{M}^{*}-\mathrm{M}\right)_{\mathrm{E}}^{\mathrm{L}}$ - c	$\left(\mathrm{M}-\mathrm{M}^{*}\right)_{\mathrm{E}}^{\mathrm{R}}$ - c
Sc_{2}-TV	1	1	-0.18	0.15	0.31	-0.30	-1.37	1	1	1	1	1
Ti2-TV	1	1	0.04	0.28	0.09	-0.09	0.34	0.44	1	1	1	1
V_{2}-TV	1	1	1	1	1	1	1	1	-0.62	-0.50	1	0.47
$\mathrm{Cr}_{2}-\mathrm{TV}$	1	1	1	1	0.55	0.29	1	1	0.76	1.04	0.14	0.97
Ni 2 -TV	1	1	1	1	1	1	1	1	1	1	1.20	1
Cu_{2}-TV	1	1	1	1	1	1	1.64	1.68	1	1	1.62	1
Y_{2}-TV	-0.40	0.84	-0.17	-0.32	1	1	0.32	0.35	1	1	1	0.70
Zr 2 -TV	-0.25	0.07	0.14	-0.28	1	1	0.01		1	1	1	1
Nb_{2}-TV	1	1	0.02	-0.11	1	1	0.48	0.29	1	1	1	0.39
Moz-TV	0.19	0.08	1	1	1.00	0.18	1	1	1	1	1	0.41
Tc_{2}-TV	1	1	1	1	1	1	1	1	1	1	0.94	1
Ruz-TV	1	1	1	1	1	1	0.52	0.55	1	1	1	0.91
Rh2-TV	1	1	1	1	0.44	0.43	1	1	1	1	1.03	1
$\mathrm{Pd}_{2}-\mathrm{TV}$	1	1	1	1	1.48	1.53	1	1	1	1	1.57	1
Lu2-TV	-0.41	-0.02	0.80	-0.49	1	1	1	1	1	1	1	1
Hf_{2}-TV	-0.42	0.77	-0.05	-0.49	-0.03	1	1	1	1	1	0.45	1
Ta2-TV	-0.25	0.44	0.69	0.05	1	1	1	1	1	1	-1.80	1
W_{2}-TV	0.60	0.32	-0.02	0.45	1	1	1	1	1	1	0.58	0.23
Re2-TV	1	1	1	1	1	1	1	1	-0.17	-0.59	0.60	1
Os2-TV	1	1	1	1	0.46	0.58	1	1	1	1	0.68	1
Ir2-TV	1	1	1	1	1	1	0.40	0.39	1	1	1	0.54
Pt2-TV	1	1	1	1	1.20	1.21	1	1	1	1	1.48	1

Notes: / means that the configuration of the first protonation step doesn't exit. * denotes the active site on the surface of catalysts that the adsorbed N_{2} connected to. The M means the transition metal atom (3d, 4d and 5d series). The subscripts E and S represent the end-on and side-on configurations, respectively. The superscripts L and R mean that adsorbed N_{2} molecules are closer to the left and right sides of M_{2}, respectively. -a and -b mean that the first proton-electron pair attacks different N atom of adsorbed N_{2} molecule for side-on configuration, -c shows that the first proton-electron pair attacks distal N atom of adsorbed N_{2} molecule for end-on configuration.

Table S10. Gibbs free energy changes of the last (sixth) protonation step for M_{2}-TV series.

$\Delta \mathrm{G}(\mathrm{eV})$	$\mathrm{C}-\mathrm{S}$	$\mathrm{C}-\mathrm{S}_{1}$	$\mathrm{C}-\mathrm{S}_{2}$	$\mathrm{~S}_{1}-\mathrm{S}_{1}$	$\mathrm{~S}_{2}-\mathrm{S}_{2}$
$\mathrm{Sc}_{2}-\mathrm{TV}$	1.76	$/$	$/$	0.52	$/$
$\mathrm{Ti}_{2}-\mathrm{TV}$	$/$	1.58	$/$	$/$	1.23
$\mathrm{~V}_{2}-\mathrm{TV}$	$/$	0.40	$/$	-0.18	$/$
$\mathrm{Cr}_{2}-\mathrm{TV}$	$/$	0.79	0.24	$/$	$/$
$\mathrm{Ni}_{2}-\mathrm{TV}$	$/$	$/$	$/$	$/$	$/$
$\mathrm{Cu}_{2}-\mathrm{TV}$	$/$	$/$	$/$	$/$	$/$
$\mathrm{Y}_{2}-\mathrm{TV}$	$/$	1.31	$/$	$/$	0.62
$\mathrm{Zr}_{2}-\mathrm{TV}$	$/$	1.25	$/$	$/$	$/$
$\mathrm{Nb}_{2}-\mathrm{TV}$	$/$	1.36	$/$	$/$	0.82
$\mathrm{Mo}_{2}-\mathrm{TV}$	$/$	0.40	$/$	-0.03	$/$
$\mathrm{Tc}_{2}-\mathrm{TV}$	$/$	$/$	$/$	$/$	$/$
$\mathrm{Ru}_{2}-\mathrm{TV}$	$/$	$/$	$/$	$/$	$/$
$\mathrm{Rh}_{2}-\mathrm{TV}$	$/$	-1.04	$/$	-0.18	$/$
$\mathrm{Pd}_{2}-\mathrm{TV}$	$/$		$/$	$/$	$/$
$\mathrm{Lu}_{2}-\mathrm{TV}$	$/$	1.06	$/$	0.37	$/$
$\mathrm{Hf}_{2}-\mathrm{TV}$	$/$	$/$	$/$	1.12	$/$
$\mathrm{Ta}_{2}-\mathrm{TV}$	$/$	$/$	$/$	0.84	$/$
$\mathrm{W}_{2}-\mathrm{TV}$	$/$	$/$	$/$	0.83	0.70
$\mathrm{Re}_{2}-\mathrm{TV}$	$/$	$/$	$/$	0.47	$/$
$\mathrm{Os}_{2}-\mathrm{TV}$	$/$	$/$	$/$	$/$	
$\mathrm{Ir}_{2}-\mathrm{TV}$	$/$	$/$	$/$	$/$	
$\mathrm{Pt}_{2}-\mathrm{TV}$	$/$	$/$	$/$	$/$	
			$/$	$/$	

Notes: / means that the configuration of the last protonation step doesn't exit. C and S mean that the adsorbates are located in the center and side of M_{2}. When adsorbates have two different configurations in two transition metal atoms, S_{1} and S_{2} are used to distinguish them.

Table S11. Gibbs free energy changes of the first protonation step for $\mathrm{M}_{2}-\mathrm{QV}$ series.

$\Delta \mathrm{G}(\mathrm{eV})$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{L}}-\mathrm{a}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{L}}-\mathrm{b}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{R}}-\mathrm{a}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{s}}^{\mathrm{R}}-\mathrm{b}$	$\left(\mathrm{M}^{*}-\mathrm{M}^{*}\right)_{\mathrm{E}}-\mathrm{c}$	$\left(\mathrm{M}^{*}-\mathrm{M}\right)_{\mathrm{E}}^{\mathrm{L}}-\mathrm{c}$	$\left(\mathrm{M}^{2}-\mathrm{M}^{*}\right)_{e_{\mathrm{R}}^{\mathrm{R}}-\mathrm{c}}$
$\mathrm{V}_{2}-\mathrm{QV}$	$/$	$/$	0.53	0.17	$/$	$/$	$/$
$\mathrm{Cr} 2-\mathrm{QV}$	$/$	$/$	$/$	$/$	$/$	0.34	$/$
$\mathrm{Mn} 2-\mathrm{QV}$	$/$	$/$	$/$	$/$	$/$	0.35	$/$
$\mathrm{Fe} 2-\mathrm{QV}$	$/$	$/$	$/$	$/$	0.28	$/$	1.01
$\mathrm{Co} 2-\mathrm{QV}$	$/$	$/$	$/$	$/$	0.45	$/$	$/$
$\mathrm{Y}_{2}-\mathrm{QV}$	$/$	$/$	0.81	-0.18	$/$	$/$	$/$
$\mathrm{Nb}_{2}-\mathrm{QV}$	0.06	0.91	$/$	$/$	$/$	$/$	$/$
$\mathrm{Lu}_{2}-\mathrm{QV}$	-0.26	0.78	$/$	$/$	$/$	$/$	$/$
$\mathrm{Hf}_{2}-\mathrm{QV}$	$/$	$/$	0.81	-0.51	$/$	$/$	$/$
$\mathrm{Ta}_{2}-\mathrm{QV}$	0.00	0.80	$/$	$/$	$/$	$/$	$/$
$\mathrm{W}_{2}-\mathrm{QV}$	$/$	$/$	0.19	0.26	$/$	$/$	-0.32

Notes: / means that the configuration of the first protonation step doesn't exit. * denotes the active site on the surface of catalysts that the adsorbed N_{2} connected to. The M means the transition metal atom ($3 \mathrm{~d}, 4 \mathrm{~d}$ and 5d series). The subscripts E and S represent the end-on and side-on configurations, respectively. The
superscripts L and R mean that adsorbed N_{2} molecules are closer to the left and right sides of M_{2}, respectively. -a and -b mean that the first proton-electron pair attacks different N atom of adsorbed N_{2} molecule for side-on configuration, -c shows that the first proton-electron pair attacks distal N atom of adsorbed N_{2} molecule for end-on configuration.

Table S12. Gibbs free energy changes of the last (sixth) protonation step for $\mathrm{M}_{2}-\mathrm{QV}$ series.

$\Delta \mathrm{G}(\mathrm{eV})$	$\mathrm{C}-\mathrm{S}$	$\mathrm{S}-\mathrm{S}$
$\mathrm{V}_{2}-\mathrm{QV}$	0.64	-0.19
$\mathrm{Cr}_{2}-\mathrm{QV}$	0.91	$/$
$\mathrm{Mn}_{2}-\mathrm{QV}$	0.95	$/$
$\mathrm{Fe}_{2}-\mathrm{QV}$	0.42	$/$
$\mathrm{Co2} 2 \mathrm{QV}$	$/$	$/$
$\mathrm{Y}_{2}-\mathrm{QV}$	1.26	$/$
$\mathrm{Nb}_{2}-\mathrm{QV}$	$/$	$/$
$\mathrm{Lu}_{2}-\mathrm{QV}$	0.94	$/$
$\mathrm{Hf}_{2}-\mathrm{QV}$	-0.43	$/$
$\mathrm{Ta} 22-\mathrm{QV}$	1.68	0.67
$\mathrm{~W}_{2}-\mathrm{QV}$	0.88	-0.12

Notes: / means that the configuration of the last protonation step doesn't exit. C and S mean that the adsorbates are located in the center and side of M_{2}. The $\mathrm{Nb}_{2}-\mathrm{QV}$ catalyst can't adsorb $* \mathrm{NH}_{2}$.

Figure S1. Gibbs free energy diagrams for NRR on $\mathrm{V}_{2}-\mathrm{TV}, \mathrm{Cr}_{2}-\mathrm{TV}, \mathrm{Fe}_{2}-\mathrm{QV}, \mathrm{Mo}_{2}-\mathrm{TV}, \mathrm{Rh}_{2}-\mathrm{TV}$, Os2-DV and Ir_{2}-TV.

Table S13. On $\mathrm{Cr}_{2}-\mathrm{TV}, \mathrm{Mo}_{2}-\mathrm{TV}$ and $\mathrm{Ir}_{2}-\mathrm{TV}$ catalysts, the evolution length of $\mathrm{N}-\mathrm{N}$ bond through eight different reaction pathways.

catalyst	Cr_{2}-TV		Mo_{2}-TV			Ir_{2}-TV		
pathway	distal	distal-alternating	consecutive	distal	enzymatic-consecutive	consecutive	enzymatic-consecutive	enzymatic-consecutive
N_{2}	1.144	1.144	1.114	1.114	1.114	1.114	1.114	1.114
first	1.252	1.252	1.156	1.133	1.239	1.183	1.183	1.183
second	1.331	1.331	1.364	1.262	1.337	1.253	1.253	1.253
third	$/$	1.444	1.459	1.356	1.410	1.430	1.416	1.416

Notes: / means that the corresponding configuration doesn't exit. First, second and third means that they are first, second and third protonation step.

Table S14. Onset potential of NRR and the corresponding magnetic moment for $\mathrm{Cr}_{2}-, \mathrm{Mo}_{2}$, Ir_{2}-TV catalysts that meet four screening criterias.

catalyst	magnetic moment $(\mu$ в $)$	onset potential (V)
$\mathrm{Cr}_{2}-\mathrm{TV}$	0.53	0.24
$\mathrm{Mo}_{2}-\mathrm{TV}$	0.00	0.39
$\mathrm{Ir}_{2}-\mathrm{TV}$	0.00	0.39

Table S15. The charge variations (the Bader charge variation of each intermediate between two adjacent steps) on the Cr_{2}-TV catalyst for NRR through (a) distal and (b) distal-alternating pathway.

(a) distal				(b) distal-alternating			
intermediate	Part A	Part B	Part C	intermediate	Part A	Part B	Part C
$* \mathrm{~N}-\mathrm{N}$	0.39	-0.36	-0.04	${ }^{*} \mathrm{~N}-\mathrm{N}$	0.39	-0.36	-0.04
$* \mathrm{~N}-\mathrm{NH}$	0.29	-0.24	-0.04	${ }^{\mathrm{N}}-\mathrm{NH}$	0.29	-0.24	-0.04
$* \mathrm{~N}-\mathrm{NH}_{2}$	-0.11	0.01	0.10	${ }^{\mathrm{N}}-\mathrm{NH}_{2}$	-0.11	0.01	0.10
$* \mathrm{~N}$	0.30	-0.22	-0.08	$* \mathrm{NH}_{2}-\mathrm{NH}_{2}$	-0.14	0.07	0.08
$* \mathrm{NH}$	-0.09	0.11	-0.01	${ }^{\mathrm{NH}}$	0.34	-0.17	-0.17
$* \mathrm{NH}_{2}$	-0.29	0.17	0.11	NH_{2}	-0.29	0.17	0.11
$* \mathrm{NH}_{3}$	-0.59	0.29	0.29	$* \mathrm{NH}_{3}$	-0.59	0.29	0.29

Notes: * denotes the active site on the surface of catalysts that the adsorbed intermediate connected to.

Table S16. The charge variations (the Bader charge variation of each intermediate between two adjacent steps) on the Mo $\mathrm{M}_{2}-\mathrm{TV}$ catalyst for NRR through (c) consecutive pathway, (d) distal pathways, (e) enzymatic-consecutive pathway.

(c) consecutive				(d) distal				(e) enzymatic-consecutive			
intermediate	Part A	Part B	Part C	intermediate	Part A	Part B	Part C	intermediate	Part A	Part B	Part C
*N-*N	0.37	0.00	-0.38	*N-*N	0.28	-0.16	-0.12	*N-*N	0.85	-0.92	0.06
*N-*NH	0.57	-0.82	0.25	*N-*NH	0.46	-0.62	0.16	*N-*NH	-0.01	0.14	-0.13
* N - $* \mathrm{NH}_{2}$	-0.24	0.17	0.07	*N-*NH2	-0.08	0.09	-0.01	* N - $* \mathrm{NH}_{2}$	-0.07	-0.05	0.12
*N	0.24	-0.17	-0.07	*NH-*NH2	0.28	-0.12	-0.16	*NH-*NH2	-0.34	0.32	0.01
*NH	-0.12	-0.08	0.20	*NH	-0.12	-0.08	0.20	*NH	0.39	-0.38	0.00
* NH_{2}	-0.31	0.35	-0.04	* NH_{2}	-0.31	0.35	-0.04	* NH_{2}	-0.31	0.35	-0.04
* NH_{3}	-0.60	0.49	0.11	* NH_{3}	-0.60	0.49	0.11	* NH_{3}	-0.60	0.49	0.11

Notes: * denotes the active site on the surface of catalysts that the adsorbed intermediate connected to.

Table S17. The charge variations (the Bader charge variation of each intermediate between two adjacent steps) on the Ir_{2} - TV catalyst for NRR through (f) consecutive-enzymatic pathway, (g) enzymatic-consecutive pathway and (h) consecutive-enzymatic pathway.

(f) consecutive				(g) enzymatic-consecutive				(h) enzymatic-consecutive			
intermediate	Part A	Part B	Part C	intermediate	Part A	Part B	Part C	intermediate	Part A	Part B	Part C
*N-*N	0.41	-0.22	-0.18	*N-*N	0.41	-0.22	-0.18	*N-*N	0.41	-0.22	-0.18
*N-*NH	-0.07	-0.10	0.17	*NH-*N	-0.07	-0.10	0.17	*N-*NH	-0.07	-0.10	0.17
*N-*NH2	0.04	0.02	-0.06	*NH-*NH	0.16	-0.03	-0.13	*NH-*NH	0.16	-0.03	-0.13
*N	0.17	-0.10	-0.07	* $\mathrm{NH}-* \mathrm{NH}_{2}$	-0.32	0.10	0.22	* NH_{2} - ${ }^{\text {NH }}$	-0.31	0.01	0.29
*NH	-0.03	0.01	0.02	*NH	0.35	-0.15	-0.20	*NH	0.31	0.06	-0.38
* NH_{2}	-0.25	0.20	0.05	* NH_{2}	-0.26	0.20	0.06	* NH_{2}	-0.23	0.08	0.15
* NH_{3}	-0.46	0.19	0.26	* NH_{3}	-0.46	0.19	0.26	* NH_{3}	-0.46	0.19	0.26

Notes: * denotes the active site on the surface of catalysts that the adsorbed intermediate connected to.

Table S18. The comparison of the catalytic performance between $U_{\text {onset }}-H E R$ and $U_{\text {onset }}-N R R$.

Catalyst	$\mathrm{U}_{\text {onset- }}$ HER (V)	$\mathrm{U}_{\text {onset }}$-NRR (V)
Cr_{2}-TV	-0.26	-0.24
Mo_{2}-TV	-0.58	-0.39
Ir_{2}-TV	-0.01	-0.38

Figure S2. (a) The evolution curve of temperature and energy versus the simulation time for the $\mathrm{Cr}_{2}-\mathrm{TV}$ catalyst. (b) The top and side views of the snapshots of $\mathrm{Cr}_{2}-\mathrm{TV}$ catalyst before and after AIMD simulations. The simulations were performed at 600 K for 10 ps with a time step of 2 fs .

Figure S3. (a) The evolution curve of temperature and energy versus the simulation time for the $\mathrm{Mo}_{2}-\mathrm{TV}$ catalyst. (b) The top and side views of the snapshots of $\mathrm{Mo}_{2}-\mathrm{TV}$ catalyst before and after AIMD simulations. The simulations were performed at 600 K for 10 ps with a time step of 2 fs .

Figure S4. (a) The evolution curve of temperature and energy versus the simulation time for the Ir_{2}-TV catalyst. (b) The top and side views of the snapshots of Ir_{2}-TV catalyst before and after AIMD simulations. The simulations were performed at 600 K for 10 ps with a time step of 2 fs .

Table S19. The structure, lattice constant, space group and point group of catalysts.
Notes: / means that the corresponding configuration doesn't exit.

Catalysts	Sc2-DV-A	Sc2-DV-B	Sc2-TV-A	Sc2-TV-B	Sc2-QV-A	Sc2-QV-B
Crystal structure	orex	-000etriperear		000ag ${ }^{\text {a }}$		/
						/
Lattice constant	$\begin{aligned} & \mathrm{a}=12.36 \AA \\ & \mathrm{~b}=12.29 \AA \\ & \mathrm{c}=16.82 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.42 \AA \\ & \mathrm{~b}=12.08 \AA \\ & \mathrm{c}=17.07 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.28 \AA \\ & \mathrm{~b}=12.28 \AA \\ & \mathrm{c}=16.98 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.36 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.86 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.25 \AA \\ & \mathrm{~b}=12.31 \AA \\ & \mathrm{c}=16.94 \AA \end{aligned}$	/
Space group	Cm (\#8)	P1 (\#1)	P1 (\#1)	C2 (\#5)	C2 (\#5)	1
Point group	Cs-3	C1-1	C1-1	C2-3	C2-3	1

Catalysts	Ti2-DV-A	Ti2-DV-B	Ti2-TV-A	Ti2-TV-B	Ti2-QV-A	
Crystal structure						

Catalysts	V_{2}-DV-A	V_{2}-DV-B	V_{2}-TV-A	V2-TV-B	V_{2}-QV-A	V_{2}-QV-B
Crystal structure		0000090000000000	0000030000000	W000xy	00000000000000	
Lattice constant	$\begin{aligned} & \mathrm{a}=12.35 \AA \\ & \mathrm{~b}=12.27 \AA \\ & \mathrm{c}=16.86 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.37 \AA \\ & \mathrm{~b}=12.27 \AA \\ & \mathrm{c}=16.81 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.70 \AA \\ & \mathrm{~b}=12.29 \AA \\ & \mathrm{c}=16.76 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.38 \AA \\ & \mathrm{~b}=12.22 \AA \\ & \mathrm{c}=16.84 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.33 \AA \\ & \mathrm{~b}=12.30 \AA \\ & \mathrm{c}=16.90 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.24 \AA \\ & \mathrm{~b}=12.30 \AA \\ & \mathrm{c}=16.98 \AA \end{aligned}$
Space group	Cm (\#8)	P1 (\#1)	Cm (\#8)	C2 (\#5)	Amm 2 (\#38)	C2 (\#5)
Point group	Cs-3	C1-1	Cs-3	C2-3	C2V-14	C2-3

Catalysts	Cr_{2}-DV-A	Cr2-DV-B	Cr_{2}-TV-A	Cr2-TV-B	Cr2-QV-A	Cr2-QV-B
Crystal structure		000100000			+00000000000000	/
						/
Lattice constant	$\begin{aligned} & \mathrm{a}=12.36 \AA \\ & \mathrm{~b}=12.21 \AA \\ & \mathrm{c}=16.89 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.42 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.81 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.43 \AA \\ & \mathrm{~b}=12.24 \AA \\ & \mathrm{c}=16.81 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.35 \AA \\ & \mathrm{~b}=12.24 \AA \\ & \mathrm{c}=16.81 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.29 \AA \\ & \mathrm{~b}=12.29 \AA \\ & \mathrm{c}=16.94 \AA \end{aligned}$	/
Space group	Cm (\#8)	P1 (\#1)	P1 (\#1)	P1 (\#1)	C2 (\#5)	1
Point group	Cs-3	C1-1	C1-1	C1-1	C2-3	1

Catalysts	Mn2-DV-A	Mn2-DV-B	Mn2-TV-A	Mn2-TV-B	Mn2-QV-A	Mn2-QV-B
Crystal structure	-0000000	1		1	00000000000000	00000000000000
		1		1		
Lattice constant	$\begin{aligned} & \mathrm{a}=12.37 \AA \\ & \mathrm{~b}=12.27 \AA \\ & \mathrm{c}=16.83 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.38 \AA \\ & \mathrm{~b}=12.23 \AA \\ & \mathrm{c}=16.73 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.26 \AA \\ & \mathrm{~b}=12.33 \AA \\ & \mathrm{c}=16.91 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.25 \AA \\ & \mathrm{~b}=12.31 \AA \\ & \mathrm{c}=16.95 \AA \end{aligned}$
Space group	Cm (\#8)	1	C2 (\#5)	1	Amm2 (\#38)	C2 (\#5)
Point group	Cs-3	1	C2-3	1	$\mathrm{C} 2 \mathrm{v}-14$	C2-3

Catalysts	Fe_{2}-DV-A	Fe_{2}-DV-B	Fe_{2}-TV-A	Fe_{2}-TV-B	Fe_{2}-QV-A	Fe_{2}-QV-B
Crystal structure	00068	-0000 froman		/	000000000000000	/
				/		/
Lattice constant	$\begin{aligned} & \mathrm{a}=12.38 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.82 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.43 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.80 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.36 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.85 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.22 \AA \\ & \mathrm{~b}=12.34 \AA \\ & \mathrm{c}=16.92 \AA \end{aligned}$	1
Space group	Cm (\#8)	P1 (\#1)	C2 (\#5)	1	C2 (\#5)	1
Point group	Cs-3	C1-1	C2-3	1	C2-3	1

Catalysts	Co_{2}-DV-A	Co_{2}-DV-B	Co2-TV-A	Co2-TV-B	Co2-QV-A	Co_{2}-QV-B
Crystal structure	00000 fienono	/	-00090,	1	0000000000000	/
		1		1		1
Lattice constant	$\begin{aligned} & \mathrm{a}=12.42 \AA \\ & \mathrm{~b}=12.27 \AA \\ & \mathrm{c}=16.80 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.34 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.88 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.20 \AA \\ & \mathrm{~b}=12.33 \AA \\ & \mathrm{c}=16.96 \AA \end{aligned}$	/
Space group	P1 (\#1)	1	C2 (\#5)	1	Amm2 (\#38)	1
Point group	C1-1	1	C2-3	/	C2v-14	1

Catalysts	Ni2-DV-A	Ni_{2}-DV-B	Ni_{2}-TV-A	Ni2-TV-B	Ni2-QV-A	Ni2-QV-B
Crystal structure	anonficmen			/	000000000000000	/
				1		1
Lattice constant	$\begin{aligned} & \mathrm{a}=12.37 \AA \\ & \mathrm{~b}=12.28 \AA \\ & \mathrm{c}=16.81 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.37 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.83 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.39 \AA \\ & \mathrm{~b}=12.24 \AA \\ & \mathrm{c}=16.90 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.12 \AA \\ & \mathrm{~b}=12.33 \AA \\ & \mathrm{c}=16.97 \AA \end{aligned}$	1
Space group	Cm (\#8)	Cm (\#8)	P1 (\#1)	1	Amm2 (\#38)	1
Point group	Cs-3	Cs-3	C1-1	1	C2v-14	1

Catalysts	Cu_{2}-DV-A	Cu2-DV-B	Cu_{2}-TV-A	Cu_{2}-TV-B	Cu_{2}-QV-A	$\mathrm{Cu}_{2}-\mathrm{QV}$-B
Crystal structure	non	/	00000	1		/
		1		1		1
Lattice constant	$\begin{aligned} & \mathrm{a}=12.37 \AA \\ & \mathrm{~b}=12.28 \AA \\ & \mathrm{c}=16.81 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.40 \AA \\ & \mathrm{~b}=12.25 \AA \\ & \mathrm{c}=16.87 \AA \end{aligned}$	/	$\begin{aligned} & \mathrm{a}=12.20 \AA \\ & \mathrm{~b}=12.35 \AA \\ & \mathrm{c}=16.93 \AA \end{aligned}$	/
Space group	Cm (\#8)	1	P1 (\#1)	1	Cm (\#8)	1
Point group	Cs-3	1	C1-1	1	Cs-3	1

Catalysts	Zn_{2}-DV-A	Zn_{2}-DV-B	Zn2-TV-A	Zn2-TV-B	Zn 2 -QV-A	Zn2-QV-B
Crystal structure		1	00000000000	/	00000000000000	1
		1		1		1
Lattice constant	$\begin{aligned} & \mathrm{a}=12.38 \AA \\ & \mathrm{~b}=12.29 \AA \\ & \mathrm{c}=16.78 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.36 \AA \\ & \mathrm{~b}=12.21 \AA \\ & \mathrm{c}=16.92 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.22 \AA \\ & \mathrm{~b}=12.42 \AA \\ & \mathrm{c}=16.78 \AA \end{aligned}$	1
Space group	Cm (\#8)	1	P1 (\#1)	1	Amm2 (\#38)	1
Point group	Cs-3	1	C1-1	1	C2v-14	1

Catalysts	Y2-DV-A	Y2-DV-B	Y2-TV-A	Y2-TV-B	Y2-QV-A	Y2-QV-B
Crystal structure				000 arg	0000000000000	
Lattice constant	$\begin{aligned} & \mathrm{a}=12.36 \AA \\ & \mathrm{~b}=12.29 \AA \\ & \mathrm{c}=16.82 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.25 \AA \\ & \mathrm{~b}=12.07 \AA \\ & \mathrm{c}=17.09 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.41 \AA \\ & \mathrm{~b}=12.23 \AA \\ & \mathrm{c}=16.83 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.37 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.83 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.25 \AA \\ & \mathrm{~b}=12.33 \AA \\ & \mathrm{c}=16.92 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.27 \AA \\ & \mathrm{~b}=12.32 \AA \\ & \mathrm{c}=16.91 \AA \end{aligned}$
Space group	Cm (\#8)	P1 (\#1)	P1 (\#1)	C2 (\#5)	Cm (\#8)	C2 (\#5)
Point group	Cs-3	C1-1	C1-1	C2-3	Cs-3	C2-3

Catalysts	Zr_{2}-DV-A	Zr2-DV-B	Zr_{2}-TV-A	Zr_{2}-TV-B	Zr_{2}-QV-A	Zr_{2}-QV-B
Crystal structure	-andxineron	0000	-00000000000			/
						1
Lattice constant	$\begin{aligned} & \mathrm{a}=12.36 \AA \\ & \mathrm{~b}=12.28 \AA \\ & \mathrm{c}=16.83 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.36 \AA \\ & \mathrm{~b}=12.24 \AA \\ & \mathrm{c}=16.92 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.29 \AA \\ & \mathrm{~b}=12.27 \AA \\ & \mathrm{c}=16.97 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.32 \AA \\ & \mathrm{~b}=12.21 \AA \\ & \mathrm{c}=16.96 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.19 \AA \\ & \mathrm{~b}=12.28 \AA \\ & \mathrm{c}=17.06 \AA \end{aligned}$	/
Space group	Cm (\#8)	P1 (\#1)	P1 (\#1)	P1 (\#1)	C2 (\#5)	1
Point group	Cs-3	C1-1	C1-1	C1-1	C2-3	1

Catalysts	Nb_{2}-DV-A	Nb_{2}-DV-B	Nb2-TV-A	Nb_{2}-TV-B	Nb_{2}-QV-A	Nb2-QV-B
Crystal structure		1	000000000000	/		
		1		1		
Lattice constant	$\begin{aligned} & \mathrm{a}=12.35 \AA \\ & \mathrm{~b}=12.29 \AA \\ & \mathrm{c}=16.83 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.37 \AA \\ & \mathrm{~b}=12.25 \AA \\ & \mathrm{c}=16.93 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.29 \AA \\ & \mathrm{~b}=12.35 \AA \\ & \mathrm{c}=16.84 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.30 \AA \\ & \mathrm{~b}=12.32 \AA \\ & \mathrm{c}=16.89 \AA \end{aligned}$
Space group	Cm (\#8)	1	P1 (\#1)	1	Cm (\#8)	C2 (\#5)
Point group	Cs-3	1	C1-1	1	Cs-3	C2-3

Catalysts	Mo2-DV-A	Mo2-DV-B	Mo2-TV-A	Mo2-TV-B	Mo2-QV-A	Mo2-QV-B
Crystal structure	位家	000ene				0000000000000
Lattice constant	$\begin{aligned} & \mathrm{a}=12.35 \AA \\ & \mathrm{~b}=12.22 \AA \\ & \mathrm{c}=16.91 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.34 \AA \\ & \mathrm{~b}=12.25 \AA \\ & \mathrm{c}=16.89 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.32 \AA \\ & \mathrm{~b}=12.23 \AA \\ & \mathrm{c}=16.90 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.46 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.67 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.36 \AA \\ & \mathrm{~b}=12.34 \AA \\ & \mathrm{c}=16.79 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.40 \AA \\ & \mathrm{~b}=12.38 \AA \\ & \mathrm{c}=16.69 \AA \end{aligned}$
Space group	Cm (\#8)	P1 (\#1)	P1 (\#1)	C2 (\#5)	Cm (\#8)	Amm2 (\#38)
Point group	Cs-3	C1-1	C1-1	C2-3	Cs-3	C2v-14

Catalysts	Tc2-DV-A	Tc2-DV-B	Tc2-TV-A	Tc2-TV-B	Tc2-QV-A	Tc2-QV-B
Crystal structure		~a		1		000000000000000
				1		
Lattice constant	$\begin{aligned} & \mathrm{a}=12.37 \AA \\ & \mathrm{~b}=12.20 \AA \\ & \mathrm{c}=16.88 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.42 \AA \\ & \mathrm{~b}=12.31 \AA \\ & \mathrm{c}=16.69 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.42 \AA \\ & \mathrm{~b}=12.23 \AA \\ & \mathrm{c}=16.82 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.33 \AA \\ & \mathrm{~b}=12.28 \AA \\ & \mathrm{c}=16.93 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.24 \AA \\ & \mathrm{~b}=12.35 \AA \\ & \mathrm{c}=16.72 \AA \end{aligned}$
Space group	P1 (\#1)	C2 (\#5)	Cm (\#8)	1	Cm (\#8)	C2 (\#5)
Point group	C1-1	C2-3	Cs-3	1	Cs-3	C2-3

Catalysts	Ru2-DV-A	Ru2-DV-B	Ru2-TV-A	Ru2-TV-B	Ru2-QV-A	Ru2-QV-B
Crystal structure	P0000000000000	000000		1	-00009000000000	/
				1		1
Lattice constant	$\begin{aligned} & \mathrm{a}=12.33 \AA \\ & \mathrm{~b}=12.28 \AA \\ & \mathrm{c}=16.88 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.42 \AA \\ & \mathrm{~b}=12.32 \AA \\ & \mathrm{c}=16.69 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.35 \AA \\ & \mathrm{~b}=12.24 \AA \\ & \mathrm{c}=16.78 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.31 \AA \\ & \mathrm{~b}=12.34 \AA \\ & \mathrm{c}=16.85 \AA \end{aligned}$	/
Space group	P1 (\#1)	C2 (\#5)	P1 (\#1)	1	C2 (\#5)	1
Point group	C1-1	C2-3	C1-1	1	C2-3	1

Catalysts	Rh_{2}-DV-A	Rh2-DV-B	Rh2-TV-A	Rh2-TV-B	Rh2-QV-A	Rh_{2}-QV-B
Crystal structure	禺		0000	-0,	-0009000000000	/
						1
Lattice constant	$\begin{aligned} & \mathrm{a}=12.33 \AA \\ & \mathrm{~b}=12.28 \AA \\ & \mathrm{c}=16.81 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.36 \AA \\ & \mathrm{~b}=12.23 \AA \\ & \mathrm{c}=16.90 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.30 \AA \\ & \mathrm{~b}=12.24 \AA \\ & \mathrm{c}=16.86 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.39 \AA \\ & \mathrm{~b}=12.28 \AA \\ & \mathrm{c}=16.77 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.28 \AA \\ & \mathrm{~b}=12.34 \AA \\ & \mathrm{c}=16.86 \AA \end{aligned}$	/
Space group	P1 (\#1)	P1 (\#1)	P1 (\#1)	C2 (\#5)	C2 (\#5)	1
Point group	C1-1	C1-1	C1-1	C2-3	C2-3	1

Catalysts	Pd2-DV-A	Pd2-DV-B	Pd_{2}-TV-A	Pd2-TV-B	Pd2-QV-A	Pd2-QV-B
Crystal structure	000080	/	0000000	1	+0000000000000000	/
		1		1		/
Lattice constant	$\begin{aligned} & \mathrm{a}=12.37 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.84 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.33 \AA \\ & \mathrm{~b}=12.22 \AA \\ & \mathrm{c}=16.87 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.28 \AA \\ & \mathrm{~b}=12.45 \AA \\ & \mathrm{c}=16.67 \AA \end{aligned}$	1
Space group	P1 (\#1)	1	P1 (\#1)	1	C2 (\#5)	1
Point group	C1-1	1	C1-1	1	C2-3	/

Catalysts	Ag_{2}-DV-A	Ag_{2}-DV-B	Ag_{2}-TV-A	$\mathrm{Ag}_{2}-\mathrm{TV}-\mathrm{B}$	Ag_{2}-QV-A	$\mathrm{Ag}_{2}-\mathrm{QV}-\mathrm{B}$
Crystal structure	00000	000000		1		1
				1		/
Lattice constant	$\begin{aligned} & \mathrm{a}=12.35 \AA \\ & \mathrm{~b}=12.25 \AA \\ & \mathrm{c}=16.88 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.42 \AA \\ & \mathrm{~b}=12.29 \AA \\ & \mathrm{c}=16.71 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.38 \AA \\ & \mathrm{~b}=12.23 \AA \\ & \mathrm{c}=16.84 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.29 \AA \\ & \mathrm{~b}=12.31 \AA \\ & \mathrm{c}=16.92 \AA \end{aligned}$	/
Space group	Cm (\#8)	C2 (\#5)	C2 (\#5)	1	P1 (\#1)	1
Point group	Cs-3	C2-3	C2-3	1	C1-1	/

Catalysts	Cd_{2}-DV-A	Cd2-DV-B	Cd_{2}-TV-A	Cd_{2}-TV-B	Cd_{2}-QV-A	Cd2-QV-B
Crystal structure			0	/	000000000	
				1		
Lattice constant	$\begin{aligned} & \mathrm{a}=12.35 \AA \\ & \mathrm{~b}=12.30 \AA \\ & \mathrm{c}=16.84 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.41 \AA \\ & \mathrm{~b}=12.28 \AA \\ & \mathrm{c}=16.74 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.41 \AA \\ & \mathrm{~b}=12.21 \AA \\ & \mathrm{c}=16.81 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.28 \AA \\ & \mathrm{~b}=12.32 \AA \\ & \mathrm{c}=16.90 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.25 \AA \\ & \mathrm{~b}=12.31 \AA \\ & \mathrm{c}=16.96 \AA \end{aligned}$
Space group	Cm (\#8)	C2 (\#5)	P1 (\#1)	1	Cm (\#8)	C2 (\#5)
Point group	Cs-3	C2-3	C1-1	1	Cs-3	C2-3

Catalysts	Lu2-DV-A	Lu2-DV-B	Lu2-TV-A	Lu2-TV-B	Lu2-QV-A	Lu2-QV-B
Crystal structure		0000	an		andxioneono	
Lattice constant	$\begin{aligned} & \mathrm{a}=12.35 \AA \\ & \mathrm{~b}=12.28 \AA \\ & \mathrm{c}=16.86 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.35 \AA \\ & \mathrm{~b}=12.28 \AA \\ & \mathrm{c}=16.83 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.40 \AA \\ & \mathrm{~b}=12.22 \AA \\ & \mathrm{c}=16.83 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.38 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.82 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.24 \AA \\ & \mathrm{~b}=12.32 \AA \\ & \mathrm{c}=16.94 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.28 \AA \\ & \mathrm{~b}=12.33 \AA \\ & \mathrm{c}=16.88 \AA \end{aligned}$
Space group	Cm (\#8)	P1 (\#1)	Cm (\#8)	C2 (\#5)	Cm (\#8)	C2 (\#5)
Point group	Cs-3	C1-1	Cs-3	C2-3	Cs-3	C2-3

Catalysts	Hf_{2}-DV-A	Hf_{2}-DV-B	Hf_{2}-TV-A	Hf_{2}-TV-B	Hf_{2}-QV-A	Hf_{2}-QV-B
Crystal structure				000ary		
Lattice constant	$\begin{aligned} & \mathrm{a}=12.35 \AA \\ & \mathrm{~b}=12.27 \AA \\ & \mathrm{c}=16.86 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.30 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.94 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.30 \AA \\ & \mathrm{~b}=12.28 \AA \\ & \mathrm{c}=16.89 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.37 \AA \\ & \mathrm{~b}=12.28 \AA \\ & \mathrm{c}=16.80 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.24 \AA \\ & \mathrm{~b}=12.33 \AA \\ & \mathrm{c}=16.93 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.30 \AA \\ & \mathrm{~b}=12.31 \AA \\ & \mathrm{c}=16.89 \AA \end{aligned}$
Space group	Cm (\#8)	P1 (\#1)	P1 (\#1)	C2 (\#5)	Cm (\#8)	C2 (\#5)
Point group	Cs-3	C1-1	C1-1	C2-3	Cs-3	C2-3

Catalysts	Ta2-DV-A	Ta2-DV-B	Ta2-TV-A	Ta2-TV-B	Ta2-QV-A	Ta2-QV-B
Crystal structure	fri			0000000	0000000000000	
Lattice constant	$\begin{aligned} & \mathrm{a}=12.36 \AA \\ & \mathrm{~b}=12.29 \AA \\ & \mathrm{c}=16.82 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.35 \AA \\ & \mathrm{~b}=12.15 \AA \\ & \mathrm{c}=16.97 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.27 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.92 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.40 \AA \\ & \mathrm{~b}=12.17 \AA \\ & \mathrm{c}=16.91 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.32 \AA \\ & \mathrm{~b}=12.36 \AA \\ & \mathrm{c}=16.79 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.30 \AA \\ & \mathrm{~b}=12.33 \AA \\ & \mathrm{c}=16.88 \AA \end{aligned}$
Space group	Cm (\#8)	P1 (\#1)	P1 (\#1)	P1 (\#1)	Cm (\#8)	C2 (\#5)
Point group	Cs-3	C1-1	C1-1	C1-1	Cs-3	C2-3

Catalysts	W_{2}-DV-A	W_{2}-DV-B	W_{2}-TV-A	W_{2}-TV-B	W_{2}-QV-A	W_{2}-QV-B
Crystal structure			A0,	-00eproseror		
Lattice constant	$\begin{aligned} & \mathrm{a}=12.35 \AA \\ & \mathrm{~b}=12.25 \AA \\ & \mathrm{c}=16.88 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.39 \AA \\ & \mathrm{~b}=12.27 \AA \\ & \mathrm{c}=16.90 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.26 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.72 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.44 \AA \\ & \mathrm{~b}=12.24 \AA \\ & \mathrm{c}=16.72 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.27 \AA \\ & \mathrm{~b}=12.32 \AA \\ & \mathrm{c}=16.90 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.31 \AA \\ & \mathrm{~b}=12.32 \AA \\ & \mathrm{c}=16.88 \AA \end{aligned}$
Space group	Cm (\#8)	P1 (\#1)	P1 (\#1)	C2 (\#5)	Cm (\#8)	C2 (\#5)
Point group	Cs-3	C1-1	C1-1	C2-3	Cs-3	C2-3

Catalysts	Re2-DV-A	Re2-DV-B	Re_{2}-TV-A	Re_{2}-TV-B	Re_{2}-QV-A	Re2-QV-B
Crystal structure	0000	$\infty 00000$	-000	1	-00aperomen	/
				1		1
Lattice constant	$\begin{aligned} & \mathrm{a}=12.34 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.88 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.48 \AA \\ & \mathrm{~b}=12.33 \AA \\ & \mathrm{c}=16.58 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.47 \AA \\ & \mathrm{~b}=12.27 \AA \\ & \mathrm{c}=16.78 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.33 \AA \\ & \mathrm{~b}=12.34 \AA \\ & \mathrm{c}=16.82 \AA \end{aligned}$	/
Space group	Cm (\#8)	C2 (\#5)	P1 (\#1)	1	C2 (\#5)	1
Point group	Cs-3	C2-3	C1-1	1	C2-3	1

Catalysts	Os2-DV-A	Os2-DV-B	Os2-TV-A	Os2-TV-B	Os2-QV-A	Os2-QV-B
Crystal structure			$/$	$/$	$/$	$/$

Catalysts	Ir_{2}-DV-A	Ir2-DV-B	Ir 2 -TV-A	Ir_{2}-TV-B	Ir2-QV-A	Ir_{2}-QV-B
Crystal structure				1		/
				1		1
Lattice constant	$\begin{aligned} & \mathrm{a}=12.39 \AA \\ & \mathrm{~b}=12.27 \AA \\ & \mathrm{c}=16.82 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.45 \AA \\ & \mathrm{~b}=12.29 \AA \\ & \mathrm{c}=16.79 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.29 \AA \\ & \mathrm{~b}=12.24 \AA \\ & \mathrm{c}=16.85 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.27 \AA \\ & \mathrm{~b}=12.37 \AA \\ & \mathrm{c}=16.83 \AA \end{aligned}$	/
Space group	P1 (\#1)	P1 (\#1)	P1 (\#1)	1	C2 (\#5)	1
Point group	C1-1	C1-1	C1-1	1	C2-3	1

Catalysts	Pt2-DV-A	Pt2-DV-B	Pt2-TV-A	Pt2-TV-B	Pt2-QV-A	Pt2-QV-B
Crystal structure	ononderer		000 anemer	1	00000000000000	/
				1		1
Lattice constant	$\begin{aligned} & \mathrm{a}=12.38 \AA \\ & \mathrm{~b}=12.27 \AA \\ & \mathrm{c}=16.82 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.36 \AA \\ & \mathrm{~b}=12.23 \AA \\ & \mathrm{c}=16.86 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.31 \AA \\ & \mathrm{~b}=12.23 \AA \\ & \mathrm{c}=16.86 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.26 \AA \\ & \mathrm{~b}=12.47 \AA \\ & \mathrm{c}=16.65 \AA \end{aligned}$	1
Space group	Cm (\#8)	P1 (\#1)	Cm (\#8)	1	Cm (\#8)	1
Point group	Cs-3	C1-1	Cs-3	1	Cs-3	1

Catalysts	Au2-DV-A	Au2-DV-B	Au2-TV-A	Au2-TV-B	Au2-QV-A	Au2-QV-B
Crystal structure			$0-0000000000$	1	0000 0^{3}	
				1		
Lattice constant	$\begin{aligned} & \mathrm{a}=12.36 \AA \\ & \mathrm{~b}=12.27 \AA \\ & \mathrm{c}=16.84 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.34 \AA \\ & \mathrm{~b}=12.20 \AA \\ & \mathrm{c}=17.02 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.35 \AA \\ & \mathrm{~b}=12.21 \AA \\ & \mathrm{c}=16.86 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.25 \AA \\ & \mathrm{~b}=12.44 \AA \\ & \mathrm{c}=16.71 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.28 \AA \\ & \mathrm{~b}=12.49 \AA \\ & \mathrm{c}=16.60 \AA \end{aligned}$
Space group	P1 (\#1)	P1 (\#1)	P1 (\#1)	1	Cm (\#8)	Amm2 (\#38)
Point group	C1-1	C1-1	C1-1	1	Cs-3	C2v-14

Catalysts	Hg_{2}-DV-A	Hg_{2}-DV-B	Hg_{2}-TV-A	Hg_{2}-TV-B	Hg_{2}-QV-A	Hg_{2}-QV-B
Crystal structure	nownerger	1		0000000000000 -	$\stackrel{\ominus}{\circ}$	$\frac{0}{0}$
		1				
Lattice constant	$\begin{aligned} & \mathrm{a}=12.40 \AA \\ & \mathrm{~b}=12.13 \AA \\ & \mathrm{c}=16.18 \AA \end{aligned}$	1	$\begin{aligned} & \mathrm{a}=12.42 \AA \\ & \mathrm{~b}=12.23 \AA \\ & \mathrm{c}=16.77 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.33 \AA \\ & \mathrm{~b}=12.21 \AA \\ & \mathrm{c}=16.96 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.23 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.15 \AA \end{aligned}$	$\begin{aligned} & \mathrm{a}=12.23 \AA \\ & \mathrm{~b}=12.26 \AA \\ & \mathrm{c}=16.07 \AA \end{aligned}$
Space group	P1 (\#1)	1	P1 (\#1)	C2 (\#5)	P1 (\#1)	Amm2 (\#38)
Point group	C1-1	1	C1-1	C2-3	C1-1	C2v-14

