Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Probing the Co Role for Promoting OER and Zn-Air Battery Performance of NiFe-LDH: A Combined Experimental and Theoretical Study

Shilong Liu,^{a, b, #} Rendian Wan,^{a, b, #} Zongshan Lin,^{a, b} Zhe Liu,^a Yonggang Liu,^a Yong

Tian,^{b,*} Dong-Dong Qin, ^{c,*} and Zhenghua Tang ^{a,d,*}

^{a.} Guangzhou Key Laboratory for Surface Chemistry of Energy Materials and New

Energy Research Institute, School of Environment and Energy, South China

University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou,

510006, China.

E-mail: zhht@scut.edu.cn

^{b.} School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006,

P. R. China.

E-mail: tian_yong_tian@163.com

^{c.} College of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai

Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006,

China.

E-mail: ccqindd@gzhu.edu.cn

^{d.} State Key Laboratory of Subtropical Building Science, South China University of

Technology, Guangzhou, 510640, China

#: These two authors contributed equally.

Calculation of electrochemically active surface area (EASA), turnover frequency (TOF), and mass activity (MA):

The EASA of the sample was estimated from the electrochemical double-layer capacitance (C_{dl}) of the catalyst. The C_{dl} was measured via cyclic voltammograms with a potential range where no apparent Faradaic process was taking place. The double-layer charging current I_c can be related to the scan rates through Equation S1:

$$I_c = C_{dl} \times v$$
 Equation

S1

Thus, plotting the charging currents at a specific potential against various scan rates leads to a straight line with the slope equal to C_{dl} (Figure S7). Subsequently, the EASA value can be obtained by Equation S2:

$$EASA = \frac{C_{dl}}{C_s}$$
 Equation

S2

where C_s is the specific capacitance of the catalyst. Here, we use general specific capacitances of $C_s = 0.040 \text{ mF} \cdot \text{cm}^{-2}$ based on typical reported values.

The TOF and MA values of the catalyst were calculated by following the equations in previous report.

$$MA = \frac{j}{m}$$
 Equation

S3

where j (mA·cm-2 geo) is the measured current density at various overpotential.

$$TOF = \frac{J \times A}{4 \times F \times n}$$
 Equation

S4

where *j* (mA·cm-2 geo) is the measured current density at various overpotential, *A* (0.25 cm²) is the area of the glass carbon electrode, *F* is Faraday's constant (96485.4 C·mol⁻¹) and *n* is the moles of the metal atom on the electrode. In this work, we assumed that all metal atoms were catalytically active no matter whether they are accessible to the electrolyte or not according to the reported literature.

Calculation of Tafel plots:

Tafel slope is an important criterion to evaluate the catalytic kinetics of the catalyst, and the Tafel slope values can be obtained by fitting the linear portions of the Tafel plots according to the following equation:

$\eta = blogj + a$ Equation S5

where η , j, b, and a is the overpotential (V), current density (mA cm⁻²), Tafel slope (mV dec⁻¹), and an analyzed constant, respectively.

Figure S1. (a) The N_2 adsorption/desorption isotherms and (b) pore size distribution for various samples.

Figure S2. (a) EDS line-scanning profile and (b) EDS spectra of the Co@NiFe-LDH sample (the C and Cu signals are from the TEM carbon film with copper grids).

Figure S3. XPS survey scan spectra of NiFe-LDH, CoNiFe-LDH, and Co@NiFe-LDH.

Figure S4. The overpotential @ 50 mA cm⁻² for NiFe-LDH, CoNiFe-LDH, Co@NiFe-LDH, and RuO₂ in 1 M KOH.

Figure S5. Exchange current densities of the electrocatalysts.

Figure S6. Representative SEM image of Co@NiFe-LDH after the stability test for 20 h in 1 M KOH(a) (b).

Figure S7. Cyclic voltammograms of (a) NiFe-LDH, (b) CoNiFe-LDH, and (c) Co@NiFe-LDH in the region of 1.02-1.12 V in 1.0 M KOH at various scan rates and (d) The plots of current density as a function of scan rate derived from (a-c), respectively.

Figure S8. (a) The electrochemically active surface area of different catalysts in OER test. (b) Mass activity for various catalysts in OER test.

Figure S9. (a) The Bader charge numbers of atoms in NiFe-LDH. (b) Differential charge density of NiFe-LDH (the red contour represents the charge accumulation).

Figure S10. Top view of (a) NiFe-LDH model and (c) Co@NiFe-LDH model, side view of (b) NiFe-LDH model and (d) Co@NiFe-LDH model (Green, orange, red, purple, and white spheres depict Ni, Fe, O, Co, and H atoms, respectively).

Figure S11. Total and partial electronic density of states (TDOS and PDOS) calculated for (a) Fe, (b) Ni, (c) H and (d) O of NiFe-LDH.

Figure S12. Total and partial electronic density of states (TDOS and PDOS) calculated for (a) Co, (b) Ni, (c) Fe and (d) H, and (O) of Co@NiFe-LDH.

Figure S13. The partial density of states of (a) NiFe-LDH and (b) Co@NiFe-LDH.

Supplementary Tables

Table S1. The content of Co, Ni, and Fe elements for all the samples, measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES).

Catalyst	Co (wt. %)	Ni (wt. %)	Fe (wt. %)
NiFe-LDH	—	42.834	14.262
CoNiFe-LDH	9.645	38.531	9.156
Co@NiFe-LDH	9.873	38.463	9.267

Table	S2.	The	OER	performance	comparison	for	non-precious-metal	based
electro	cataly	sts in	1.0 M	КОН.				

Catalyst	η@10mA cm ⁻² (mV)	Tafel Slope (mV dec ⁻¹)	Reference
Co@NiFe-LDH	253	44	This work
NiCo ₂ S ₄ @NiFe-LDH	287	86	<i>Appl. Catal. B Environ.</i> 2021 , <i>286</i> , 119869
S/NiN _x -PC/EG	280	45	Nat. Commun. 2019 , 10, 1392
α-CoVO _x	347	97	ACS Catal. 2018 , <i>8</i> , 644- 650
NiFeP/MXene	287	86	<i>Appl. Catal. B Environ.</i> 2021 , <i>286</i> , 119869
CoP/NCNHP	286	35	<i>Sci. Bull.</i> 2021 , <i>66</i> , 1063-1072
NiFe-LDH-0.4M HMS	290	51	J. Energy Chem. 2019 , 33, 130-137
CoP@PC-750	283	53	Small 2019, 15, 1900550
NiFe-OOHov	288	38	Nano Energy 2019 , 56, 109
CoP/TiOx	337	72.1	Small 2020, 16, 1905075
Co ₂ P NRs	372	111.8	J. Am. Chem. Soc. 2020 , 142, 8490
FeNi ₃ @NC	277	77	<i>Appl. Catal. B Environ.</i> 2020 , <i>268</i> , 118729
Ni-Fe ₂ O ₃	277	68	ACS Sustainable Chem. Eng. 2019 ,714, 12117- 12124

	Peak power	Specific	
Catalyst	density	capacity	Reference
	(mW cm ⁻²)	(mA h g ⁻¹)	
Co@NiFe- LDH	165	652	This work
Zn-N-C-1	179	683 at 100 mA cm ⁻²	Angew. Chem., 2019 , 131, 7109-7113
Co-SAs@-NC	105	897 at 20 mA cm ⁻²	Angew. Chem. Int. Ed., 2019 , 58, 5359-5364.
Zn-Ni3FeN/NG	158	650 at 20 mA cm ⁻²	J. Mater.Chem.A 2021 , 9, 2301-2307
NiFe/NCNF/CC	140	730	<i>Appl. Catal. B Environ.</i> 2021 , 285, 119856
CNT-800	126.2	827	<i>Appl. Catal. B Environ.</i> 2021 , 298, 120511
NFPC-1100	157	-	<i>Appl. Catal. B Environ.</i> 2021 , 297, 120448
Cu/Zn-N ₄	164.3	-	Small. 2020, 16, 2004855

 Table S3. The zinc-air battery performance comparison of the Co@NiFe-LDH

 decorated battery and other transition-metal-chalcogenide catalysts modified batteries.

Table S4. Gibbs free energy change of the four elementary steps at different sites.

Catalvat/site		Gibbs free ene	ergy change	
Cataryst/site	$\Delta G1$	$\Delta G2$	$\Delta G3$	$\Delta G4$
NiFe-Ni site	0.15994	1.78639	2.43197	0.5417
NiFe-Fe site	0.81375	1.04927	2.28207	0.77491
Co@NiFe-Ni site	1.81921	1.8253	1.76417	-0.48868
Co@NiFe-Fe site	1.02299	1.40719	1.57897	0.91085