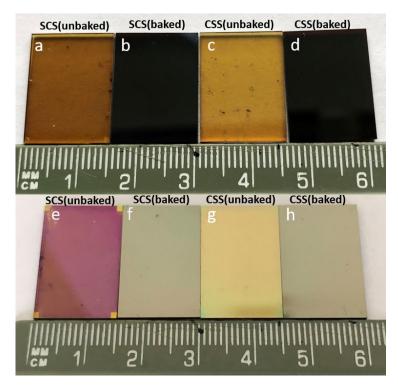
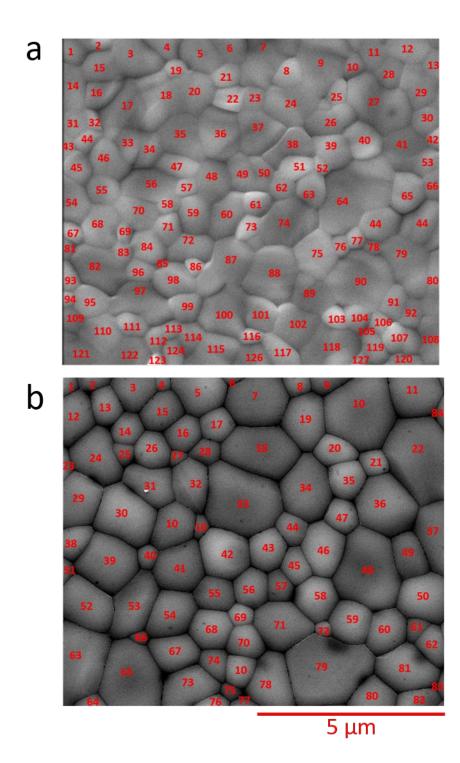
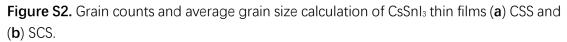
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

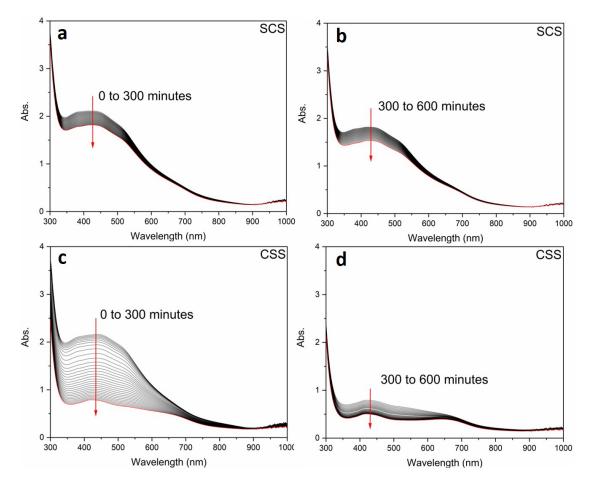

SUPPORTING INFORMATION

Supporting Information for


High thermoelectric performance based on CsSnl₃ thin films with improved stability


Weidong Tang,^a Tianjun Liu^a and Oliver Fenwick^{a*}

^a School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom;


Figure S1. Optical images of the two types CsSnl₃ thin films before and after annealing steps. (**a-d**) Back-lit films and (**e-h**) front-lit films.

The average grain size = $\frac{\text{total area}}{\text{total number}}$ The average grain size of SCS = 1.06 μ m² The average grain size of CSS = 0.71 μ m²

Page **3** of **18**

Figure S3. UV-vis absorption spectra of the two types CsSnl₃ **thin films.** Time dependent UV-vis absorption spectra of SCS CsSnl₃ thin films (a) from 0 to 300 minutes and (b) from 300 to 600 minutes. Time dependent UV-vis absorption spectra of CSS CsSnl₃ thin films (c) from 0 to 300 minutes and (d) from 300 to 600 minutes.

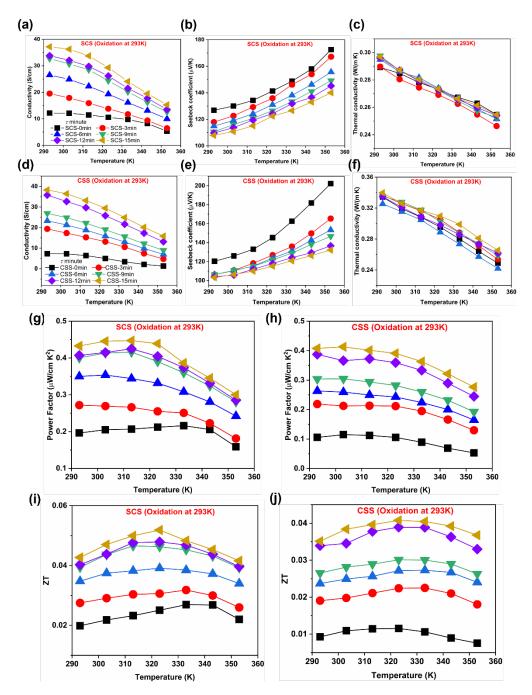
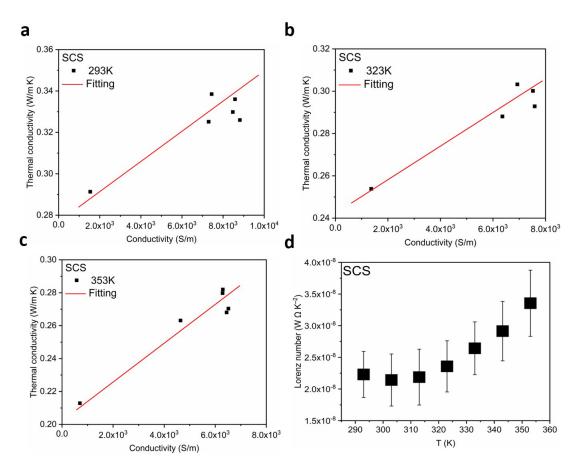
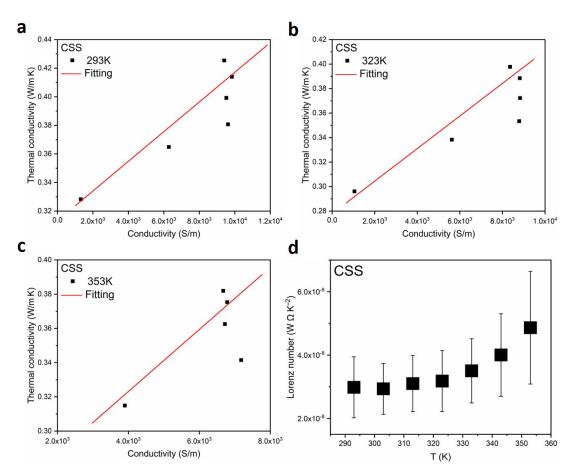




Figure S4. Thermoelectric properties of the two types CsSnl₃ thin films oxidised at 20 °C. Temperature dependent electrical conductivity, σ (a), Seebeck coefficient, S (b), thermal conductivity, κ_{total} (c), power factor, PF (g) and figure-of-merit, zT(i), of SCS CsSnl₃ thin films with air exposure at 20 °C. Temperature dependent electrical conductivity, σ (d), Seebeck coefficient, S (e), thermal conductivity, κ_{total} (f), power factor, PF (h) and figure-of-merit, zT(j) of CSS CsSnl₃ thin films with air exposure at 20 °C.

Figure S5. The relationship between thermal conductivity (total) and electrical conductivity of SCS CsSnl₃ **thin films. (a-c)** The total thermal conductivity as a function of electrical conductivity with linear fitting at 293 K, 323 K and 353 K. (d) Temperature dependence of Lorenz number from 293 K to 353K.

Figure S6. The relationship between thermal conductivity (total) and electrical conductivity of CSS CsSnI₃ **thin films. (a-c)** The total thermal conductivity as a function of electrical conductivity with linear fitting at 293 K, 323 K and 353 K. (d) Temperature dependence of Lorenz number from 293 K to 353K.

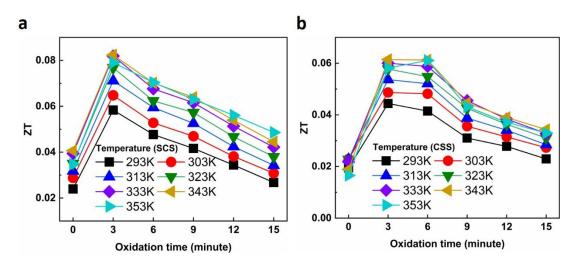


Figure S7. The Figure of merit, *zT*, stability measurement of $CsSnI_3$ thin films oxidised at 80 °C. (a) *zT* of a SCS film and (b) *zT* of a CSS film.

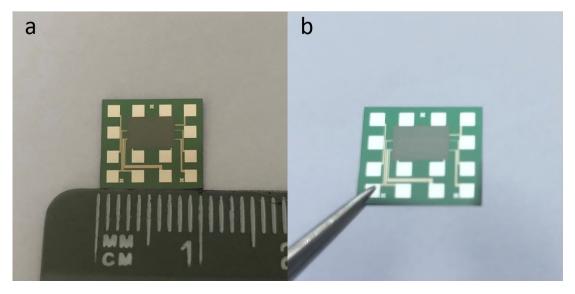


Figure S8. Images of thermoelectrical property measurement chips with deposited CsSnI₃ thin films.

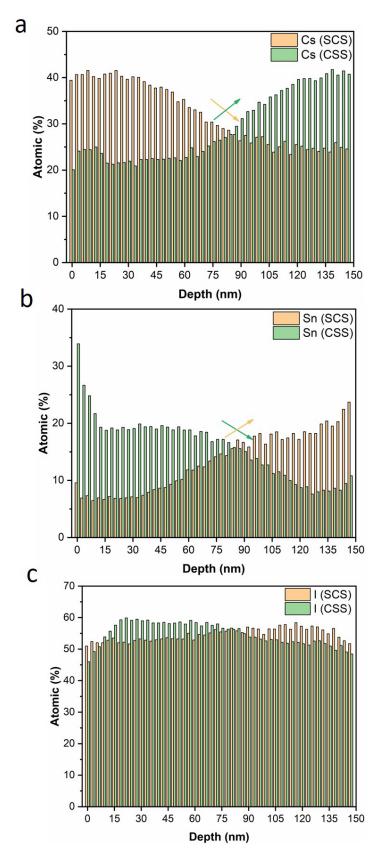


Figure S9. XPS depth profile of elemental concentration for CsSnl₃ thin films (from 0 to 150 nm). (a) Cesium (b) Tin (c) lodide.

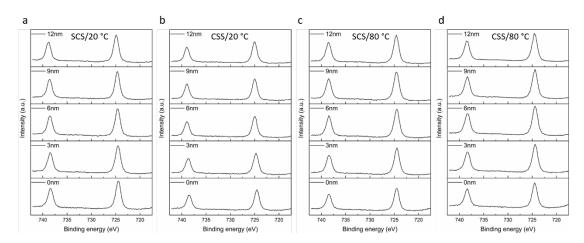


Figure S10. XPS depth profile of Cs 3d (Caesium) for CsSnl₃ thin films (from 0 to 12 nm). (a) SCS film oxidised at 20 °C (b) CSS film oxidised at 20 °C (c) SCS oxidised at 80 °C (d) CSS oxidised at 80 °C.

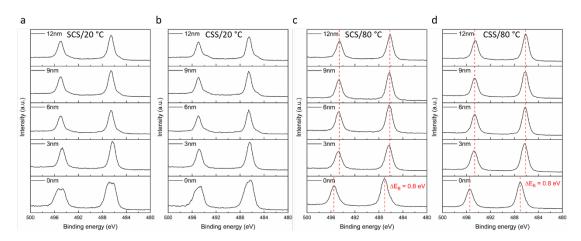


Figure S11. XPS depth profile of Sn 3d (Tin) for CsSnl₃ thin films (from 0 to 12 nm). (a) SCS film oxidised at 20 °C (b) CSS film oxidised at 20 °C (c) SCS oxidised at 80 °C (d) CSS oxidised at 80 °C.

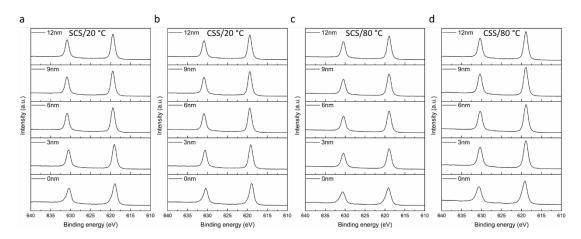


Figure S12. XPS depth profile of I 3d (lodide) for CsSnI₃ thin films (from 0 to 12 nm). (a) SCS film oxidised at 20 °C (b) CSS film oxidised at 20 °C (c) SCS oxidised at 80 °C (d) CSS oxidised at 80 °C.

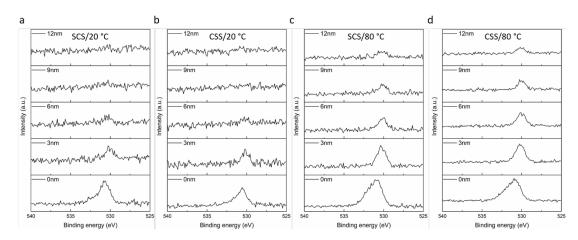
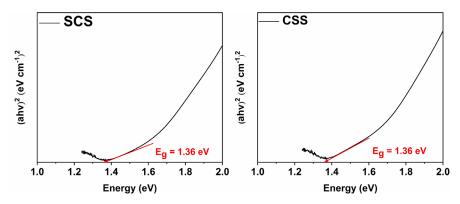



Figure S13. XPS depth profile of O 1s (Oxygen) for CsSnl₃ thin films (from 0 to 12 nm). (a) SCS film oxidised at 20 °C (b) CSS film oxidised at 20 °C (c) SCS oxidised at 80 °C (d) CSS oxidised at 80 °C.

Figure S14 Tauc plots of the absorption spectra of SCS and CSS CsSnl₃ thin films, confirming a band gap of 1.36 eV in both cases.

Sample		Ν	$M_4N_{4,5}N_{4,5}$				
	peak		pea	peak c	peak		
(eV)	а				d		
	${}^{1}S_{0}$	${}^{1}G_{4}$	${}^{3}P_{2}$	${}^{3}F_{2,3}$	${}^{3}F_{4}$	${}^{1}G_{4}{}^{1}D_{2}$	³ F _{2,3}
Barlow* Ref. ¹	421.3	425.6	426.8	427.9	428.7	434.1	436.3
Pessa Ref. ²	422.9	425.6		427.6		434.1	
SCS-20(0nm)	422.5		42	432.7	436.1		
SCS-20(3nm)	421.5		42	433.1	435.3		
SCS-20(6nm)	421.2		42		435.3		
SCS-20(9nm)	421.3		42		435.6		
SCS-	421.1		42		435.5		
20(12nm)							
CSS-20(0nm)	422.8		42	432.7	435.6		
CSS-20(3nm)	421.2		42	433.4	435.8		
CSS-20(6nm)	421.3		42		435.5		
CSS-20(9nm)	421.3		42		435.6		
CSS-	421.6		42		435.6		
20(12nm)							
SCS-80(0nm)	422.5		42	432	434.7		
SCS-80(3nm)	421.3		42	433.4	435.6		
SCS-80(6nm)	421.7		42	433.7	435.9		
SCS-80(9nm)	421.8		42		435		
SCS-	421.6		42		435.6		
80(12nm)							
CSS-80(0nm)	423.1		42	432.4	435.5		
CSS-80(3nm)	421.3		42	433.6	436.2		
CSS-80(6nm)	421.5		42	433.9	435.8		
CSS-80(9nm)	421.6		42		435		
CSS-	421.8		42		435.4		
80(12nm)							

Table S1: Auger peaks of reference Sn metal (Sn $^{\circ}$) and our CsSnI $_{3}$ thin films.

Sample	E _b 3d _{5/2} (ev)	*ΔE _b 3d₅/₂(oxide- metal) (ev)	Ek M₅N₄₅N₄₅ (ev)	*ΔEκ (oxide- metal) (ev)	α' (ev)	Ref.
Sn-metal	483.8		431.6		915.4	3
Sn-metal	484.9		430		914.9	4
SnO	486.4	2.6	426.2	5.4	912.6	4
SnO ₂	487.1	3.3	424.1	7.5	911.2	4
SCS-20(0nm)	486.6	2.8	426.4	5.2	913.0	This work
SCS-20(3nm)	486.4	2.6	427.2	4.4	913.6	This work
SCS-20(6nm)	486.6	2.8	427.8	3.8	914.4	This work
SCS-20(9nm)	486.6	2.8	428.0	3.6	914.6	This work
SCS-20(12nm)	486.6	2.8	428.0	3.6	914.6	This work
CSS-20(0nm)	486.4	2.6	426.7	4.9	913.1	This work
CSS-20(3nm)	486.5	2.7	427.7	3.9	914.2	This work
CSS-20(6nm)	486.6	2.8	428.1	3.5	914.7	This work
CSS-20(9nm)	486.6	2.8	428.3	3.3	914.9	This work
CSS-20(12nm)	486.6	2.8	428.2	3.4	914.8	This work
SCS-80(0nm)	487.1	3.3	425.5	6.1	912.6	This work
SCS-80(3nm)	486.3	2.5	426.4	5.2	912.7	This work
SCS-80(6nm)	486.4	2.6	426.8	4.8	913.2	This work
SCS-80(9nm)	486.2	2.4	427.2	4.4	913.4	This work
SCS-80(12nm)	486.3	2.5	428.0	3.6	914.3	This work
CSS-80(0nm)	487.1	3.3	425.5	6.1	912.6	This work
CSS-80(3nm)	486.3	2.5	426.5	5.1	912.8	This work
CSS-80(6nm)	486.2	2.4	426.9	4.7	913.1	This work
CSS-80(9nm)	486.2	2.4	427.2	4.4	913.4	This work
CSS-80(12nm)	486.1	2.3	427.5	3.9	913.8	This work

Table S2: Experimental binding, Auger kinetic energy values and Auger parameter for SCS and CSS films compare to references.

Supporting References

- 1. S. Barlow, P. Bayat-Mokhtari and T. E. Gallon, *Journal of Physics C: Solid State Physics*, 1979, **12**, 5577-5584.
- 2. M. Pessa, S. Aksela and M. Karras, *Physics Letters A*, 1970, **31**, 382-383.
- 3. A. F. Lee and R. M. Lambert, *Physical Review B*, 1998, **58**, 4156-4165.
- 4. L. Kövér, Z. Kovács, R. Sanjinés, G. Moretti, I. Cserny, G. Margaritondo, J. Pálinkás and H. Adachi, *Surface and Interface Analysis*, 1995, **23**, 461-466.