Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Intrinsic acetamide brush-off by polyurea biodendrimers

Nuno Martinho,*^a Rita F. Pires,^a Mire Zloh,^{b,c} and Vasco D. B. Bonifácio*^a

^a iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.

^b School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom.

^c Faculty of Pharmacy, University Business Academy, Novi Sad, Serbia.

*E-mail: nunomartinho@tecnico.ulisboa.pt; vasco.bonifacio@tecnico.ulisboa.pt

Fig. S1 Acetamide crystals that crystalized out of a PURE_{G4} biodendrimer crude mixture.

Fig. S2 Root mean square deviation of simulated $PURE_{G4}$ biodendrimers at different pH values. Equilibration was achieved after approximately 10 ns.

Fig. S3 Interactions of ibuprofen with the $PURE_{G4}$ biodendrimer in the last snapshot. Several interactions are observed: terminal amines from multiple dendrimer branches with the carboxylic acid of ibuprofen, as well as bidentate bridges between the urea motif of $PURE_{G4}$ and the carboxylic acid of ibuprofen.

Fig. S4 Radial distribution of dendrimer branches, ibuprofen, and water molecules from the core of a $PURE_{G4}$ biodendrimer. Ibuprofen is majorly distributed at the terminal branches while water has a high penetration into the interior.