Molecular design of peptide amphiphiles for controlled self-assembly and drug release

Ziqi Liu, a Xuan Tang, a Feng Feng, a Jing Xu, a Can Wu, a Guoru Dai, a Wanqing Yue, ab Wenying Zhong *ab and Keming Xu *abc

a Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China.
b Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
c Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.

corresponding authors: *E-mail: wyzhong@cpu.edu.cn; xus1019@163.com

Table of Content

Scheme S1. Chemical structures of peptide amphiphiles (PAs) with different capping groups and hydrophilic domains.

Table S1. Values of MGC and CAC of PA molecules with varying capping groups.

Fig. S1. HPLC elution curves of C_{12}-VVAADD (A), Fmoc-C_{12}-VVAADD (B), and Nap-C_{12}-VVAADD (C). Purity > 90%.

Fig. S2. TOF-MS spectra of C_{12}-VVAADD (A), Fmoc-C_{12}-VVAADD (B), and Nap-C_{12}-VVAADD (C).

Fig. S3. 1H NMR spectra of C_{12}-VVAADD (A), Fmoc-C_{12}-VVAADD (B), and Nap-C_{12}-VVAADD (C) (300 MHz, DMSO).

Fig. S4. HPLC elution curves of Nap-C_{12}-VVAAG (A) and Nap-C_{12}-VVAAD (B). Purity > 90%.

Fig. S5. TOF-MS spectra of Nap-C_{12}-VVAAG (A) and Nap-C_{12}-VVAAD (B).

Fig. S6. 1H NMR spectra of Nap-C_{12}-VVAAG (A) and Nap-C_{12}-VVAAD (B) (300 MHz, DMSO).

Fig. S7. Values of critical aggregation concentration (CAC) of 1-G/Ca^{2+}/DOX (A), 1-D/Ca^{2+}/DOX (B), and 1-DD/Ca^{2+}/DOX (C).

Fig. S8. Cumulative release of DOX from DOX solution at pH 7.4 and 6.5.

Fig. S9. (A) Cell viability of HeLa cells after treatment of DOX solution for 24 h (DOX concentration: 0.5 – 8 mg/mL). (B) IC_{50} values of DOX, 1-G/Ca^{2+}/DOX, 1-D/Ca^{2+}/DOX, and 1-DD/Ca^{2+}/DOX for HeLa cells (24 h).

Fig. S10. Fluorescence images of HeLa cells after 2 h pre-treatment of varying endocytosis inhibitors (CPZ, CytD and Filipin III) and 2 h treatment of free DOX (10 μg/mL) (A) and 1-DD/Ca^{2+}/DOX (B) at 37 °C.
Scheme S1. Chemical structures of peptide amphiphiles (PAs) with different capping groups and hydrophilic domains.

Table S1. Values of MGC and CAC of PA molecules with varying capping groups

<table>
<thead>
<tr>
<th>Sequence</th>
<th>MGC (%)</th>
<th>CAC (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{12}-VVAADD</td>
<td>2.8</td>
<td>378.4</td>
</tr>
<tr>
<td>Fmoc-C_{12}-VVAADD</td>
<td>2.2</td>
<td>131.7</td>
</tr>
<tr>
<td>Nap-C_{12}-VVAADD</td>
<td>2.0</td>
<td>107.3</td>
</tr>
</tbody>
</table>

Note: MGC: minimal gelation concentration; CAC: critical aggregation concentration.
Fig. S1. HPLC elution curves of C₁₂-VVAADD (A), Fmoc-C₁₂-VVAADD (B), and Nap-C₁₂-VVAADD (C). Purity > 90%.
Fig. S2. TOF-MS spectra of C$_{12}$-VVAADD (A), Fmoc-C$_{12}$-VVAADD (B), and Nap-C$_{12}$-VVAADD (C).

Fig. S3. (A) 1H NMR spectrum of C$_{12}$-VVAADD (300 MHz, DMSO).

1H NMR (300 MHz, DMSO) δ 12.84 (s, 3 H), 8.26 – 7.94 (m, 6 H), 4.55 (dd, $J = 13.5$, 7.8 Hz, 2 H), 4.42 (s, 2 H), 4.25 (dd, $J = 7.1$, 4.9 Hz, 2 H), 2.82 – 2.52 (m, 8 H), 2.01 – 1.92 (m, 2 H), 1.23 (s, 16 H), 1.18 (dd, $J = 7.0$, 2.1 Hz, 10 H), 0.81 (d, $J = 6.8$ Hz, 12 H).

(B) 1H NMR spectrum of Fmoc-C$_{12}$-VVAADD (300 MHz, DMSO).

1H NMR (300 MHz, DMSO) δ 12.50 (s, 3 H), 8.01 – 7.88 (m, 6 H), 7.73 – 7.65 (m, 3 H), 7.41 (d, $J = 7.2$ Hz, 2 H), 7.35 – 7.16 (m, 4 H), 4.67 – 4.36 (m, 4 H), 4.28 (s, 2 H), 4.26 (s, 2 H), 3.38 (s, 1 H), 2.98 – 2.92 (m, 2 H), 2.61 (qd, $J = 16.8$, 5.8 Hz, 6 H), 2.12 (dd, $J = 15.0$, 7.2 Hz, 2 H), 1.21 (s, 16 H), 1.17 (d, $J = 7.0$ Hz, 8 H), 0.80 (d, $J = 6.8$ Hz, 12 H).

(C) 1H NMR spectrum of Nap-C$_{12}$-VVAADD (300 MHz, DMSO).

1H NMR (300 MHz, DMSO) δ 8.15 – 7.91 (m, 6 H), 7.80 (d, $J = 8.1$ Hz, 3 H), 7.69 (d, $J = 8.6$ Hz, 1 H), 7.52 – 7.39 (m, 4 H), 4.57 – 4.48 (m, 2 H), 4.27 – 4.15 (m, 4 H), 3.55 (s, 2 H), 3.08 – 3.01 (m, 2 H), 2.78 – 2.51 (m, 6 H), 2.13 (dd, $J = 14.5$, 7.3 Hz, 2 H), 1.99 – 1.91 (m, 2 H), 1.43 (d, $J = 24.6$ Hz, 6 H), 1.20 (s, 16 H), 0.82 (t, $J = 5.4$ Hz, 12 H).
Fig. S4. HPLC elution curves of Nap-C_{12}-VVAAG (A) and Nap-C_{12}-VVAAD (B). Purity > 90%.

Fig. S5. TOF-MS spectra of Nap-C_{12}-VVAAG (A), and Nap-C_{12}-VVAAD (B),
Fig. S6. (A) 1H NMR spectrum of Nap-C$_{12}$-VVAAG (300 MHz, DMSO).

1H NMR (300 MHz, DMSO) δ 12.53 (s, 1 H), 8.11 (t, $J = 5.8$ Hz, 1 H), 7.99 – 7.86 (m, 4 H), 7.81 (d, $J = 8.3$ Hz, 3 H), 7.69 (d, $J = 8.7$ Hz, 1 H), 7.47 (ddd, $J = 15.2$, 10.3, 6.3 Hz, 4 H), 4.32 – 4.25 (m, 2 H), 4.21-4.13(m, 2 H), 3.79 – 3.71 (m, 2 H), 3.56 (s, 2 H), 3.44 (s, 2 H), 3.05 (dd, $J = 12.7$, 6.6 Hz, 2 H), 2.14 (dq, $J = 13.7$, 6.8 Hz, 2 H), 1.97 (dd, $J = 13.1$, 6.6 Hz, 2 H), 1.39 (t, $J = 27.3$ Hz, 6 H), 1.21 (d, $J = 3.4$ Hz, 16 H), 0.83 (t, $J = 5.5$ Hz, 12 H).

(B) 1H NMR spectrum of Nap-C$_{12}$-VVAAD (300 MHz, DMSO).

1H NMR (300 MHz, DMSO) δ 12.60 (s, 2 H), 8.04 (dd, $J = 27.4$, 14.4 Hz, 5 H), 7.91 (dd, $J = 11.7$, 3.9 Hz, 3 H), 7.69 (d, $J = 8.7$ Hz, 1 H), 7.46 (ddd, $J = 14.3$, 8.0, 2.2 Hz, 4 H), 4.52 (d, $J = 7.7$ Hz, 1 H), 4.29 (d, $J = 7.0$ Hz, 2 H), 4.17 (d, $J = 7.1$ Hz, 2 H), 3.56 (s, 2 H), 3.05 (d, $J = 6.0$ Hz, 2 H), 2.63 (qd, $J = 16.7$, 6.2 Hz, 4 H), 2.17 – 2.10 (m, 2 H), 2.00 – 1.93 (m, 2 H), 1.43 (d, $J = 24.9$ Hz, 6 H), 1.20 (s, 16 H), 0.84 (d, $J = 4.7$ Hz, 12 H).
Fig. S7. Values of critical aggregation concentration (CAC) of 1-G/Ca^{2+}/DOX (A), 1-D/Ca^{2+}/DOX (B), and 1-DD/Ca^{2+}/DOX (C).

Fig. S8. Cumulative release of DOX from DOX solution at pH 7.4 and 6.5.

Fig. S9. (A) Cell viability of HeLa cells after treatment of DOX solution for 24 h (DOX concentration: 0.5 – 8 μg/mL). (B) IC_{50} values of DOX, 1-G/Ca^{2+}/DOX, 1-D/Ca^{2+}/DOX, and 1-DD/Ca^{2+}/DOX for HeLa cells (24 h).
Fig. S10. Fluorescence images of HeLa cells after 2 h pre-treatment of varying endocytosis inhibitors (CPZ, CytD and Filipin III) and 2 h treatment of free DOX (10 μg/mL) (A) and 1-DD/Ca²⁺/DOX (B) at 37 °C. Graphic labeling: CPZ (I, II, III); CytD (IV, V, VI) and Filipin III (VII, VIII, IX). Red fluorescence channel for DOX (I, IV, VII); DAPI channel for nucleus stain (II, V, VIII); and Merged images (III, VI, IX). The scale bars correspond to 100 μm in all the images.