Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Supporting Information

GOX-Hemin Nanogels with Enhanced Cascade Activity for Sensitive

One-Step Glucose Detection

Xiaotong Fan,^a Jiawei Lim,^a Zibiao Li,^b Tingting Wang,^c Lu Jiang,^b Siqi Liu,^a Lili Zhou,^a Chaobin He^{a,b,*}

- a. Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore. Email: msehc@nus.edu.sg
- b. Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore.
- c. Department of Biomedical Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore.

*Address correspondence to: msehc@nus.edu.sg

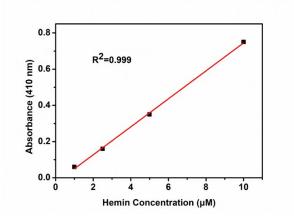


Fig. S1 The standard curve of hemin in DMSO.

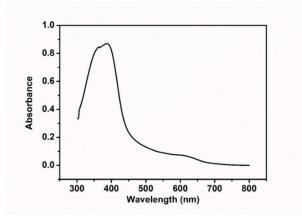
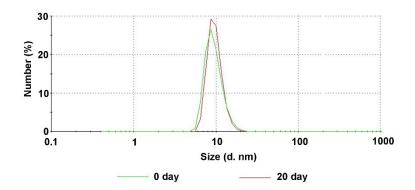



Fig. S2 The absorbance spectrum of GHN in PBS solution (1.1 μ M hemin equivalent)

Fig. S3 The image of the sample solution from left to right is the aqueous solution of hemin, mixture of hemin and GOX, and GHN, indicating after hemin was polymerized onto GOX, it became soluble in aqueous solution.

Fig. S4 Detecting the size stability of the GHN at room temperature. The size of the prepared GHN was almost unchanged after kept at room temperature for 20 days.

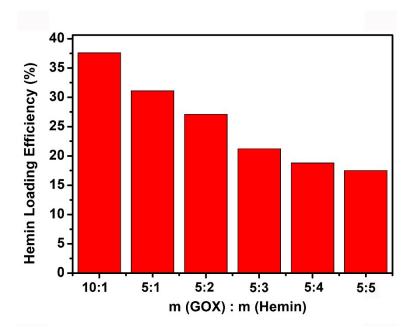


Fig. S5 Hemin loading efficiency for preparing GHN at different GOX/Hemin ratios.

Table S1 Kinetic	parameters	for the	peroxidase	like	activity	of	GOX-hemin	nanogel
(GHN), and GOX a	activity of GO	X-porph	nyrin nanoge	el (GF	PN) and r	nati	ve GOX.	

		Km	k _{cat}	K _M /k _{cat}
Catalyst	Substrate	(mM)	(min⁻¹)	(M ⁻¹ min ⁻¹)
GHN	H ₂ O ₂	12.52	8.1	650
GOX	glucose	8.97	15722	1.75×10 ⁶
GPN	glucose	13.62	21813	1.60×10 ⁶

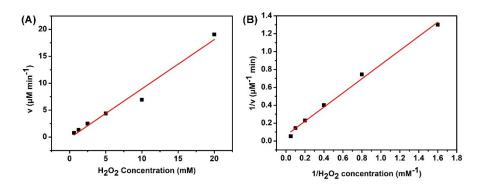


Fig. S6 Steady-state kinetic assays for the peroxidase like activity of GHN. (A) Michaelis– Menten and (B) Lineweaver-Burk plots for the H_2O_2 substrate.

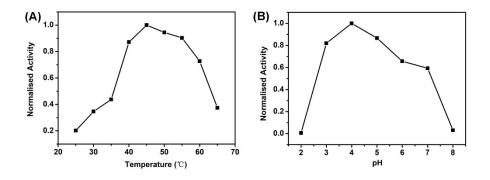
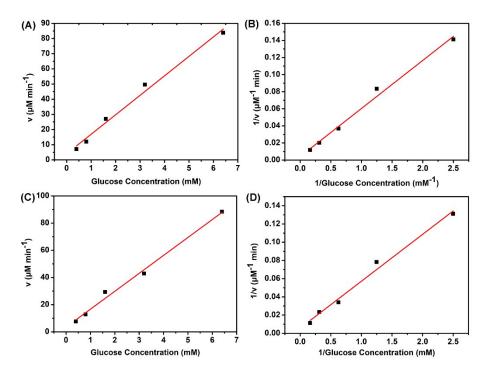



Fig. S7 The optimal (A) temperature and (B) pH for the peroxidase like activity of GHN.

Fig. S8 Steady-state kinetic assays for the GOX activity of GPN and GOX. (A) Michaelis–Menten and (B) Lineweaver-Burk plots for the GOX activity of GPN. (C) Michaelis–Menten and (D) Lineweaver-Burk plots for GOX.

Fig. S9 The optimal (A) temperature and (B) pH for the GOX activity of GPN.

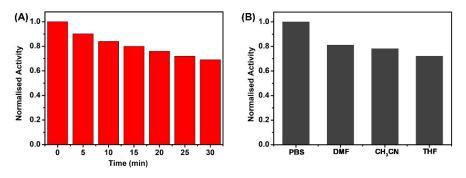


Fig. S10 (A) Relative glucose detection activity of GHN after being incubated at 55 °C for 0 to

30 min. (B) Relative glucose detection activity of GHN after being incubated for 25 min at room temperature in 20% (v/v) aqueous solution of DMF, CH_3CN and THF (Incubation in PBS as a control).

Table S2 Comparison of the limitation of determination (LOD) for glucose on basis of different materials

Materials	LOD (µM)	Method	Reference
Fe ₃ O ₄	30	colorimetry	1
Co ₃ O ₄ NPs	5	colorimetry	2
BSA-Cu NCs	100	colorimetry	3
CeO ₂ /NT-TiO ₂	6.1	colorimetry	4
Graphene Oxide	1	colorimetry	5
V_2O_5 nanozymes	10	colorimetry	6
GOX/Hemin nanogel	4	colorimetry	This work

References

- 1. H. Wei and E. Wang, Anal. Chem., 2008, 80, 2250-2254.
- 2. H. Jia, D. Yang, X. Han, J. Cai, H. Liu and W. He, Nanoscale, 2016, 8, 5938-5945.
- L. Hu, Y. Yuan, L. Zhang, J. Zhao, S. Majeed and G. Xu, Anal. Chim. Acta, 2013, 762, 83-86.
- H. Zhao, Y. Dong, P. Jiang, G. Wang and J. Zhang, ACS Appl. Mat. Interfaces, 2015, 7, 6451-6461.
- 5. Y. Song, K. Qu, C. Zhao, J. Ren and X. Qu, Adv. Mater., 2010, 22, 2206-2210.
- 6. J. H. Sun, C. Y. Li, Y. F. Qi, S. L. Guo and X. Liang, Sensors 2016, 16, 584.