## **Supporting Information**

## Development and Demonstration of Functionalized Inorganic-Organic Hybrid Copper Phosphate Nanoflowers for Mimicking the Oxidative Reactions of Metalloenzymes by Working as a Nanozyme

## Rahul Nag<sup>a,b</sup> and Chebrolu Pulla Rao<sup>\*,a</sup>

<sup>a</sup>Department of Chemistry, Indian Institute of Technology Tirupati, Settipalli post, Tirupati– 517506, Andhra Pradesh, India, E-mail: <u>cprao@iittp.ac.in</u>

<sup>b</sup>Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400 076, India

#### Contents

| S1. Characterization of Compounds                             | S-2         |
|---------------------------------------------------------------|-------------|
| S2. Spectra for $L_1$                                         | S-4         |
| S3. Spectra for $L_2$                                         | S-5         |
| S4. Spectra for $L_3$                                         | S-7         |
| S5. Spectra for $L_4$                                         | S-9         |
| S6. FT-IR spectra for CuNF and L <sub>n</sub> -CuPNF          | S-10        |
| S7. XPS spectra for L <sub>4</sub> -CuPNFs                    | S-11        |
| S8. Petal Morphology for Hybrid Nanoflower                    | S-12        |
| S9. Size Distribution for Hybrid Nanoflowers                  | S-12        |
| S10. Nanoflower growth upon varying [Cu <sup>2+</sup> ]       | S-13        |
| S11. FEG-SEM Micrographs Showing Petal Thickness              | S-13        |
| S12. EDS spectra for $L_4$ -CuPNF                             | <b>S-14</b> |
| S13. A Schematic Diagram for the Formation of $L_n$ -CuPNFs   | S-15        |
| S14. Absorbance Data for OPD Oxidation                        | S-16        |
| S15. Concentration Optimization and Study of the              |             |
| Mechanism of Peroxidase Activity                              | <b>S-16</b> |
| S16. Absorption data for Ascorbate Oxidation                  | <b>S-17</b> |
| S17. Absorption Data for Dopamine Oxidase Study               | S-17        |
| S18. ESI-MS Spectrum for the Copper Complex of L <sub>4</sub> | <b>S-18</b> |
| S19. Characterization of the Copper Complex of $L_4$          | S-19        |
| S20. Table S1. Copper Based Nanomaterials Possessing          | S-20        |
| Peroxidase Mimetic Activity                                   |             |

### **S1.** Characterization of Compounds:

**S1.1.** L<sub>1</sub>: <sup>1</sup>H-NMR: (500 MHz, CDCl<sub>3</sub>, δ ppm) : 7.89 (s, 2H, OH), 7.77 (m, 4H, phth-H), 7.55 (m, 4H, phth-H), 7.05 (d, 4H, Ar-H), 6.88 (d, 4H, Ar-H), 6.72 (t, 2H, Ar-H), 6.64 (t, 2H, Ar-H), 4.33 (d, 4H, Ar-CH<sub>2</sub>-Ar ), 4.15 (m, 8H, OCH<sub>2</sub>CH<sub>2</sub>), 3.39 (d, 4H, Ar-CH<sub>2</sub>-Ar), 2.48 (t, 4H,N-CH<sub>2</sub>). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, δ ppm):

149.3,146.1,144.7,142.6,140.4,132.8,132.6,132.2,130.7,130.5,129.2,129.1,128.9,128.5,123.5, 123.1,122.0,121.7,111.3,101.7. ESI-MS peak observed for **L**<sub>1</sub> (C<sub>19</sub>H<sub>13</sub>N<sub>3</sub>): Calcd.: 283.33; Found: 284.09 [M+ H]<sup>+</sup>.

**S1.2**. **L**<sub>2</sub>: <sup>1</sup>H-NMR: (500 MHz, CDCl<sub>3</sub>, δ ppm) : 7.89 (s, 2H, OH), 7.77 (m, 4H, phth-H), 7.55 (m, 4H, phth-H), 7.05 (d, 4H, Ar-H), 6.88 (d, 4H, Ar-H), 6.72 (t, 2H, Ar-H), 6.64 (t, 2H, Ar-H), 4.33 (d, 4H, Ar-CH<sub>2</sub>-Ar ), 4.15 (m, 8H, OCH<sub>2</sub>CH<sub>2</sub>), 3.39 (d, 4H, Ar-CH<sub>2</sub>-Ar), 2.48 (t, 4H,N-CH<sub>2</sub>). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, δ ppm):

162.3,150.2,148.9,147.2,145.7,144.4,136.0,133.5,132.6,132.2,131.3,130.9,130.7,128.8,128.8, 127.8,126.4,125.6,125.5,124.3,123.5,123.2,111.4. ESI-MS peak observed for L<sub>2</sub> (C<sub>23</sub>H<sub>15</sub>N<sub>3</sub>): Calcd.: 333.39; Found: 334.1[M+ H]<sup>+</sup>.

**S1.3**. **L**<sub>3</sub>: <sup>1</sup>H-NMR: (500 MHz, CDCl<sub>3</sub>, δ ppm) : 7.89 (s, 2H, OH), 7.77 (m, 4H, phth-H), 7.55 (m, 4H, phth-H), 7.05 (d, 4H, Ar-H), 6.88 (d, 4H, Ar-H), 6.72 (t, 2H, Ar-H), 6.64 (t, 2H, Ar-H), 4.33 (d, 4H, Ar-CH<sub>2</sub>-Ar ), 4.15 (m, 8H, OCH<sub>2</sub>CH<sub>2</sub>), 3.39 (d, 4H, Ar-CH<sub>2</sub>-Ar), 2.48 (t, 4H, N-CH<sub>2</sub>). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, δ ppm):

173.4,161.8,150.3,149.0,147.4,145.7,144.6,136.2,132.2,131.6,130.8,130.5,129.1,128.9,127.9, 126.3,125.7,125.6,124.8,123.5,123.4,111.7. ESI-MS peak observed for L<sub>3</sub> (C<sub>27</sub>H<sub>17</sub>N<sub>3</sub>): Calcd.: 383.44; Found: 384.15[M+ H]<sup>+</sup>.

**S1.4**. L<sub>4</sub>: <sup>1</sup>H-NMR: (500 MHz, CDCl<sub>3</sub>, δ ppm) : 7.89 (s, 2H, OH), 7.77 (m, 4H, phth-H), 7.55 (m, 4H, phth-H), 7.05 (d, 4H, Ar-H), 6.88 (d, 4H, Ar-H), 6.72 (t, 2H, Ar-H), 6.64 (t, 2H

H), 4.33 (d, 4H, Ar-CH<sub>2</sub>-Ar ), 4.15 (m, 8H, OCH<sub>2</sub>CH<sub>2</sub>), 3.39 (d, 4H, Ar-CH<sub>2</sub>-Ar), 2.48 (t, 4H,N-CH<sub>2</sub>). <sup>13</sup>C-NMR (CDCl<sub>3</sub>, δ ppm):

161.3,150.7,149.3,147.6,146.0,144.7,136.8,133.8,133.0,131.2,130.9,130.5,129.9,129.8,129.4, 128.5,127.9,127.7,127.2,127.0,126.7,126.4,125.7,124.,124.,123.,123.3,112.1. ESI-MS peak observed for L<sub>4</sub> (C<sub>29</sub>H<sub>17</sub>N<sub>3</sub>): Calcd.: 407.47; Found: 408.15[M+ H]<sup>+</sup>.





**Fig. S01** (a) <sup>1</sup>H, (b) <sup>13</sup>C NMR spectra of  $P_1$  in CDCl<sub>3</sub> and (c) ESI-MS spectrum of  $L_1$ .

### S3. Spectra of $L_2$ .





**Fig. S02** (a) <sup>1</sup>H, (b) <sup>13</sup>C NMR spectra of  $L_2$  in DMSO-D<sub>6</sub> and (c) ESI-MS spectrum of  $L_2$ .

### S4. Spectra for L<sub>3</sub>:





**Fig. S03** (a) <sup>1</sup>H, (b) <sup>13</sup>C NMR spectra of  $L_3$  in DMSO-D<sub>6</sub> and (c) ESI-MS spectrum of  $L_3$ .

S5 Spectra for L<sub>4</sub>:





Fig. S04 (a)  ${}^{1}$ H, (b)  ${}^{13}$ C NMR spectra of L<sub>4</sub> in DMSO-D<sub>6</sub> and (c) ESI-MS spectrum of L<sub>4</sub>.





Fig. S05 FT-IR spectra for CuPNF and (a) L<sub>1</sub>-CuPNF, (b) L<sub>3</sub>-CuPNF and (c) L<sub>4</sub>-CuPNF.

**S7**. XPS spectra for L<sub>4</sub>-CuPNFs.



Fig. S06 XPS spectra for (a) Cu 2p, (b) P 2p, (c) C 1s, (d) N 1s and (e) O 1s of L<sub>4</sub>-CuPNFs.

S8. Petal Morphology for Hybrid Nanoflowers.



Fig. S07 FEG-SEM micrographs of (a) CuPNF (Scale bare: 1  $\mu$ m), (b) L<sub>1</sub>-CuPNF (Scale bare: 1  $\mu$ m), (c) L<sub>2</sub>-CuPNF (Scale bare: 100 nm), (d) L<sub>3</sub>-CuPNF (Scale bare: 1  $\mu$ m), (e) L<sub>4</sub>-CuPNF (Scale bare: 1  $\mu$ m).

**S9**. Size Distribution of Hybrid Nanoflowers.



Fig. S08 Size distribution from SEM of (a)  $L_1$ -CuPNF (Scale bare: 10 µm), (b)  $L_2$ -CuPNF (Scale bare: 100 µm), (c)  $L_3$ -CuPNF (Scale bare: 100 µm), (d)  $L_4$ -CuPNF (Scale bare: 100 µm).

**S10**. Nanoflower Growth upon Varying  $[Cu^{2+}]$ .



**Fig. S09** SEM micrographs of  $L_4$ -CuPNF while varying Cu<sup>2+</sup> concentration: (a) 80 mM, (b) 120 mM, (c) 200 mM. (Scale bare: 10  $\mu$ m for (a), (b) and (c)).

### S11. FEG-SEM Micrographs Showing Petal Thickness.



Fig. S10 HR-SEM image of (a)  $L_4$ -CuPNF (Scale bare: 1  $\mu$ m) and its (b) enlarged view (Scale bare: 100 nm).

# **S12**. EDS spectra for L<sub>4</sub>-CuPNF.



Fig. S11 EDS analysis from SEM micrographs of (a) and (b) for  $L_4$ -CuPNF.



S13. A Schematic Diagram for the Formation of  $L_n\mbox{-}Cu\mbox{PNFs}.$ 

Fig. S12 Schematic representation for the formation and growth of the nanoflower in the presence of  $L_n$  conjugates.

**S14**. Absorption Data for OPD Oxidation.



**Fig. S13** (a) Colorimetric changes showing OPD oxidation in the presence of  $L_4$ -CuPNF/H<sub>2</sub>O<sub>2</sub>. (b) A<sub>415</sub> vs time plot for OPD Oxidation to 2,3-diaminophenazine (DAP,  $\lambda_{max}$ =415 nm) in the presence of  $L_n$ -CuPNFs. (OPD=5 mM, H<sub>2</sub>O<sub>2</sub>=50 mM, PBS buffer (pH 7.4 10 mM),  $L_n$ -CuPNFs=1 mg/mL).

S15. Concentration Optimization and Study of the Mechanism of Peroxidase Activity.



**Fig. S14** TA oxidation in presence of L<sub>4</sub>-CuPNFs (1 mg/mL) (a) keeping  $[H_2O_2]$  constant at 150 mM varying [TA] and (b) keeping [TA] constant at 0.8 mM varying  $[H_2O_2]$  in phosphate buffer (pH 7.0) shown via plotting fluorescence intensity at 425 nm vs. respective concentrations of the substrates (TA/H<sub>2</sub>O<sub>2</sub>). (c) Relative intensity plot at 425 nm showing TA oxidation in presence hydroxyl (methanol and isopropanol=1 mg/mL) and superoxide radical trap (benzoquinone=1 mg/mL) and CuPNFs/H<sub>2</sub>O<sub>2</sub>.

**S16**. Absorption data for Ascorbate Oxidation.



Fig. S15 (a) Absorption spectra for the ascorbate and dehydroascorbate. (b) Relative absorbance data for Ascorbate Oxidation in the presence of CuPNF and  $L_n$ -CuPNFs (sodium ascorbate= 50µM, phosphate buffer (pH= 7.0, 5 mM),  $L_n$ -CuPNF= 100 µg/mL).

#### **S17**. Absorption Data for Dopamine Oxidase Study.



**Fig. S16** (a) Colorimetric changes showing DA oxidation in the presence of  $L_4$ -CuPNFs. (b)  $A_{480}$  vs. time plot for dopamine oxidation to aminochrome in the presence of CuPNF and  $L_n$ -CuPNFs (dopamine= 10  $\mu$ M, PBS buffer (pH= 7.4, 10 mM),  $L_n$ -CuPNF= 100  $\mu$ g/mL).



S18. ESI-MS Spectrum for the Copper Complex of L<sub>4</sub>.

Fig. S17 ESI-MS spectrum for the copper complex of  $L_4$ . The experimental and calculated isotopic peak pattern has been given for comparison.



S19. Characterization of the Copper Complex of L<sub>4</sub>.

**Fig. S18** (a) FTIR spectrum for  $L_4$  (black) and  $Cu(L_4)_2$  (red). (b) XRD spectrum for CuPNF-L<sub>4</sub> and (black) and  $Cu(L_4)_2$  (red). (c) EPR spectrum for  $Cu(L_4)_2$ . XPS spectrum for  $Cu(L_4)_2$ : (d) Cu 2p, (e) N 1s and (f) O 1s.

| Natural                       | Nanomaterial                                        | Applications        | Reference                                                                                                       |
|-------------------------------|-----------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|
| Enzyme                        |                                                     |                     |                                                                                                                 |
|                               | CuO                                                 | nhanol              | I Environ Sci Technol 2015 12                                                                                   |
| Horse<br>Radish<br>Peroxidase | CuO                                                 | degradation         | <i>J. Environ. Sci. Technol.</i> , 2013, <b>12</b> , 653–660.                                                   |
|                               |                                                     | degradation         | Biosens Bioelectron 2014 61 374-                                                                                |
|                               |                                                     | detection           | 378                                                                                                             |
|                               |                                                     |                     |                                                                                                                 |
|                               | CuO/Pt                                              | detection           | Analyst, 2017, 142, 2500-2506                                                                                   |
|                               | $BSA-Cu_3(PO_4)_2$                                  | immunodetection     | Anal. Chem., 2008, <b>80</b> , 2250–2254                                                                        |
|                               |                                                     |                     | ····· - ··· ··· ··· ··· ··· ··· ··· ···                                                                         |
|                               | Cu <sup>2+</sup> -C-dots                            | detection           | ACS Nano, 2017, <b>11</b> ,3247–3253                                                                            |
|                               | $Cu^{2+}-g-C_3N_4$                                  | detection           |                                                                                                                 |
|                               |                                                     |                     |                                                                                                                 |
|                               | Cu <sup>2+</sup> -GO                                | detection           | Nano Lett., 2017, 17, 2043–2048                                                                                 |
|                               | CuInS <sub>2</sub>                                  | detection           | <i>Sens. Actuators B</i> , 2015, <b>209</b> , 670–676                                                           |
|                               |                                                     |                     |                                                                                                                 |
|                               | Cu NPs@C                                            | detection           | <i>Chem. Eur. J.</i> , 2014, <b>20</b> , 16377–16383                                                            |
|                               | CuS                                                 | immunodetection     | Anal. Methods, 2015, 7, 5454–5461;                                                                              |
|                               |                                                     |                     | ACS Appl. Mater. Interfaces, 2016, 8,                                                                           |
|                               |                                                     |                     | 12031-12038                                                                                                     |
|                               |                                                     |                     | L Am Cham Soc 2015 127                                                                                          |
|                               | $Cu(OH)_2$                                          |                     | J. Am. Chem. Soc., 2015, <b>15</b> 7,<br>12057–12062                                                            |
|                               |                                                     |                     | 13737 13903                                                                                                     |
|                               | Cu <sub>2</sub> (OH) <sub>3</sub> Cl-               | detection           | Microchim. Acta, 2015, 182,                                                                                     |
|                               | CeO <sub>2</sub>                                    |                     | 1733–1738                                                                                                       |
|                               | Cu MOE                                              | dataction           | Angl Chim Acta 2015 <b>856</b> 00-05:                                                                           |
|                               |                                                     | detection           | Anal Chim Acta 2018 <b>1004</b> 74–81                                                                           |
|                               |                                                     |                     | <i>That. Chin. Heid</i> , 2010, <b>1004</b> , 74–01                                                             |
|                               | Cu-β-LG                                             | detection           | ACS Appl. Mater. Interfaces, 2016,                                                                              |
|                               |                                                     |                     | <b>8</b> ,10392–10402                                                                                           |
|                               | Asn/Lys-                                            | Dve Degradation     | <i>Sci. Rep.</i> , 2016, <b>6</b> , 22412                                                                       |
|                               | $Cu_3(PO_4)_2$                                      | <i>j</i> - <i>g</i> | The second se |
|                               |                                                     |                     |                                                                                                                 |
|                               | GO <sub>x</sub> &HRP–                               | Glucose             | Nanoscale, 2014, <b>6</b> , 255–262                                                                             |
|                               | $Cu_3(PO_4)_2 \cdot 3H_2O$                          | Detection           |                                                                                                                 |
|                               | HRP-Cu <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> | Colorimetric        | Colloids and Surfaces B: Biointerfaces,                                                                         |
|                               | from copper foil                                    | TMB oxidation       | 2015, <b>135</b> , 613–618                                                                                      |
|                               |                                                     |                     |                                                                                                                 |

**S20**. Table S1. Copper Based Nanomaterials Possessing Peroxidase Mimetic Activity.

| $\mathbf{L_{n}-Cu_{3}(PO_{4})_{2}}$ | potential        | Present Work |
|-------------------------------------|------------------|--------------|
| $(L_n = aromatic$                   | applications:    |              |
| [phenyl,                            | detection, water |              |
| naphthyl,                           | purification     |              |
| anthracenyl,                        |                  |              |
| pyrenyl]                            |                  |              |
| phenanthroline                      |                  |              |
| conjugates)                         |                  |              |
|                                     |                  |              |