Supporting Information

Bi₂S₃-embedded gellan gum hydrogel for localized tumor

photothermal/antiangiogenic therapy

Yingjiao Wu,^a Yuqing Liang,^a Yandi Liu,^a Yijun Hao,^a Na Tao,^a Juan Li,^{*a} Xiaoyi Sun,^a

Ming Zhou*bc and You-Nian Liu^a

^aHunan Provincial Key Laboratory of Micro & Nano Materials Interface Science,

College of Chemistry and Chemical Engineering, Central South University, Changsha

410083, China

^bDepartment of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China

^cKey Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha 410008, China

*Corresponding authors. E-mail addresses: juanli@csu.edu.cn (J. Li), 405735@csu.edu.cn (M. Zhou).

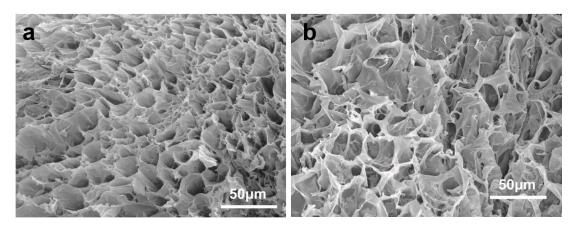


Fig. S1. SEM images of a) Bi₂S₃@GG hydrogel and b) SF/Bi₂S₃@GG hydrogel.

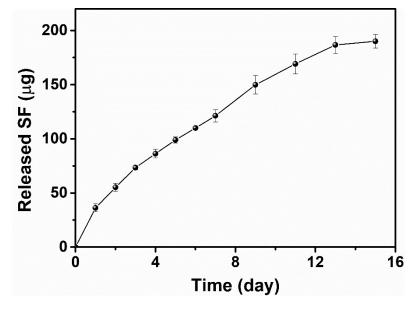


Fig. S2. Release behavior of SF from SF/Bi₂S₃@GG hydrogel.

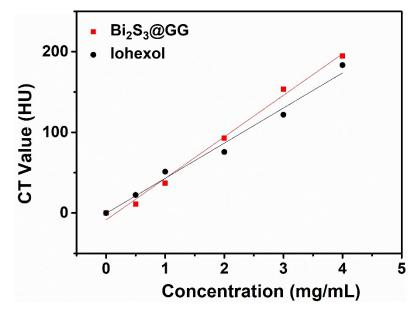
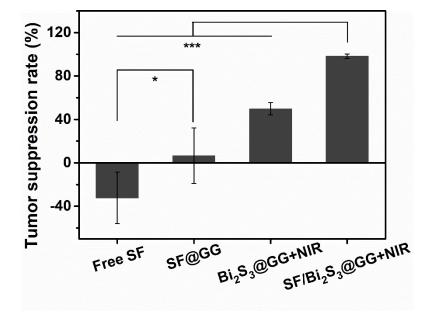



Fig. S3. X-ray attenuation of intensity in Hounsfield units (HU) of Bi₂S₃@GG hydrogel

and iohexol at different Bi or I concentrations.

Fig. S4. CT images of tumor-bearing mice intratumorally injected with iohexol.

Fig. S5. Tumor suppression rate after different treatments (n = 4; *p < 0.05, **p < 0.01,

****p* < 0.001).

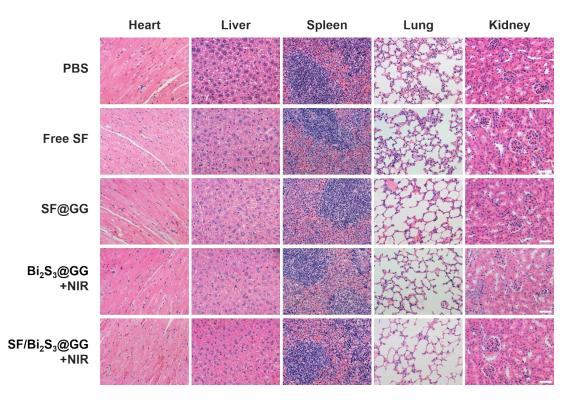


Fig. S6. H & E staining images of the major organs (heart, liver, spleen, lung, and kidney) of mice with different treatments. The scale bar is $100 \mu m$.