Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Supporting Information

2

1

3 A dual-functional biomimetic mineralized nanoplatform for glucose

4 detection and therapy with cancer cells in vitro

- 5 Chunlei Yang, Mengxu Gao, Hengzhi Zhao, Yazhou Liu, Na Gao, Jing Jing*, Xiaoling
- 6 Zhang*
- 7 Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory
- 8 of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and
- 9 Chemical Engineering.
- 10 Beijing Institute of Technology, Beijing, 100081, P.R. China.
- 11 E-mail addresses: hellojane@bit.edu.cn (Jing Jing), zhangxl@bit.edu.cn (Xiaoling
- 12 Zhang).
- 13
- 14

1 CONTENTS

2	Figure S1. Experimental apparatus of CaCO ₃ -PDA synthesis
3	Figure S2. STEM mapping analysis of CaCO ₃ -PDA
4	Figure S3. TEM images of before and after CaCO ₃ -PDA@DOX-GOx NPs incubated
5	with glucose
6	4
7	Figure S4. The Zeta potentials of CaCO ₃ -PDA, CaCO ₃ -PDA-DOX, and CaCO ₃ -
8	PDA@DOX-
9	GOx
10	4
11	Figure S5. Excitation, emission spectra and molecular structures of DOX
12	Figure S6. Fluorescent intensity of DOX and standard curve
13	Figure S7. Evolution of the fluorescence intensity with the increase of incubation
14	time after glucose solution
15	Figure S8. Fluorescence response of CaCO ₃ -PDA@DOX-GOx NPs in glucose with
16	PBS
17	
18	Figure S9. DOX retention rate in CaCO ₃ -PDA@DOX-GOx and GOx loss
19	amounts7
20	Figure S10. Photographs of CaCO ₃ -PDA and CaCO ₃ -PDA@DOX-GOx in PBS 7.4 at
21	different

1	time
2	7
3	
4	
5	

- 1
- 2 Figure S1. The experimental apparatus of CaCO₃-PDA mesoporous nanoparticles
- 3 synthesis.

4

5 Figure S2. STEM mapping analysis of CaCO₃-PDA mesoporous nanoparticles in the

6 dark field.

- 1
- 2 Figure S3. (A) TEM image of CaCO₃-PDA@DOX-GOx NPs. (B) TEM image of
- 3 CaCO₃-PDA@DOX-GOx incubated with glucose solution.

6 Figure S4. The Zeta potentials of CaCO3-PDA, CaCO3-PDA-DOX, and CaCO3-

2 Figure S5. (A) (a) Excitation and (b) emission spectra of DOX. (B) molecular structures

3 of DOX.

5 Figure S6. Linear relationships between the concentration of DOX and the6 fluorescence intensity.

1

2 Figure S7. Evolution of the fluorescence intensity with the increase of incubation time

3 after glucose solution (10 mM). All of the fluorescence intensities are recorded at 599

4 nm, under the excitation of 470 nm.

5

6 Figure S8. Fluorescence response of CaCO₃-PDA@DOX-GOx NPs in 10 mM glucose

⁷ with PBS 7.4 (0.01M).

Figure S9. (A) The DOX retention rate in CaCO₃-PDA@DOX-GOx with increased
incubation time in PBS 7.4. (B) The changes of glucose concentrations (reflect the loss
amounts of GOx in supernatant of self-assembly in PBS 7.4) with increased incubation
time.

8 Figure S10. Photographs of CaCO₃-PDA and CaCO₃-PDA@DOX-GOx in PBS 7.4 at

⁹ different time.

