Supporting Information

Sensitive Colorimetric Glucose Sensor by Iron-based Nanozymes with Controllable Fe Valence

Wenli Zhao,^{#a} Guangpu Zhang,^{#b} Yang Du,^c Shuangqin Chen,^a You Fu,^c Fan Xu,^a Xiangyun Xiao,^a Wei Jiang,^{*b} and Qingmin Ji^{*a}

^a Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, P. R. China.

^b National Special Superfine Powder Engineering Technology Research Center, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.

^c School of Chemical Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, P. R. China.

*Corresponding authors: jiqingmin@njust.edu.cn; superfine_jw@126.com

Additional Data

Figure S1. (a) The STEM image and the corresponding element mappings, O (green), Si (red), Fe (yellow) of Fe³⁺@SHSs; (b) EDS spectroscopy of Fe³⁺@SHSs

Figure S2. The high-magnification SEM images of (a) $Fe^{3+}@SHSs$, (b) $FeO_x@SHS-300$, (c) $FeO_x@SHS-400$, (d) $FeO_x@SHS-500$, (e) $FeO_x@SHS-600$, and (f) $FeO_x@SHS-700$.

Figure S3. The N₂ adsorption-desorption isotherms and the pore size distribution curves of (a) Fe^{3+} @SHSs; (b) FeO_x @SHS-300; (c) FeO_x @SHS-400; (d) FeO_x @SHS-500; (e) FeO_x @SHS-600; (f) FeO_x @SHS-700.

Figure S4. (a) The UV-Vis spectra and (b) the FT-IR spectra of the Fe-doped silica hollow spheres. (i) $Fe^{3+}@SHSs$; (ii) $FeO_x@SHS-300$; (iii) $FeO_x@SHS-400$; (iv) $FeO_x@SHS-500$; (v) $FeO_x@SHS-600$ and (vi) $FeO_x@SHS-700$.

Figure S5. The XPS spectrum of Fe³⁺@SHSs (before reduction treatment).

Figure S6. Magnetic hysteresis loops (at 300 K) of the Fe^{3+} @SHSs (before reduction treatment) and FeO_x@SHS-500 (after reduction treatment).

Figure S7. The colorimetric catalytic mechanism of Fe-based nanozyme based on the Fenton reactions.

Figure S8. The EPR spin-trap spectra for the reactive oxidative species generated from

 $\mbox{FeO}_x @SHSs$ in the Fenton process after 5 minutes reacting.

Figure S9. The influence of reaction conditions on the peroxidase-like activity of $FeO_x@SHS-500$. (a) the amount of catalyst, (b) pH, (c) H_2O_2 concentration, and (d) temperature. The standard error bars were derived from three repeated measurements.

Figure S10. The steady state kinetic analysis for FeO_x@SHS-500 under various conditions. (a) [TMB] = 0.3 mM; $[H_2O_2]=0.025-0.7\text{mM}$, (c) $[H_2O_2]=1.0\text{mM}$; [TMB] = 0.01-0.3 mM; (b) and (d) are the Lineweaver-Burk double reciprocal plots corresponding to conditions (a) and (c). The reaction was carried out with 60 µg/mL catalyst of 0.1 M acetate buffer, pH=3 and temperature=30 °C. The standard error bars were derived from three repeated measurements.

Samples	Calcination temperature	$S_{BET} (m^2 g^{-1})$	$V (cm^3g^{-1})$	
Fe ³⁺ @SHSs	-	471.96	0.890	
FeO _x @SHS-300	300°C	370.12	0.818	
FeO _x @SHS-400	400°C	352.74	0.772	
FeO _x @SHS-500	500°C	337.00	0.688	
FeO _x @SHS-600	600°C	122.53	0.349	
FeO _x @SHS-700	700°C	67.64	1.060	

Table S1. The porous parameters of $FeO_x@SHSs$.

NL	$K_{m}(mM)$		V _{max} (10 ⁻⁸ M·S ⁻¹)			
Nanozyme	TMB	H_2O_2	TMB	H_2O_2	Kef.	
HRP	0.434	3.7	10.0	8.71	1	
Go-Fe ₃ O ₄	0.43	0.71	13.08	5.31	2	
Casein-Fe ₃ O ₄	0.021	4.75	10.6	15.9	3	
Fe ₃ O ₄ @C	0.313	0.414	19.8	5.25	4	
Fe ₃ O ₄ @C YSNs	0.27	0.035	12.0	3.34	5	
Fe-MSN	0.407	0.01	7.60	4.33	6	
Fe _{0.5} Co _{0.5} NPs	1.79	0.06	45.6	13.2	7	
Fe ₃ O ₄ -MMT	0.025	0.811	9.409	5.139	8	
Mesoporous g-Fe ₂ O ₃	0.0997	144.30	52.0	1.84	9	
FeNPs@Co ₃ O ₄ HNCs	0.488	0.019	20.6	1.7	10	
3D GN with Fe ₃ O ₄ NPs	0.103	1.39	11.6	10.1	11	
Fe3O4/N-GQDs	0.19	1.02	13.8	2.76	12	
Fe-MOF	2.6	1.3	5.6	2.5	13	
GOx@HP-MIL-88B-BA	0.22	0.38	6.8	7.2	14	
Fe-rGO sheets	0.071	30	44.6	26.6	15	
Co ₃ O ₄ @Co-Fe oxide DSNCs	0.48	0.24	5.32	5.18	16	
2Fe ₂ O ₃ /30Pt/CNTs	0.17	0.053	18.1	6.79	17	
MoS2-MIL-101(Fe)	2.279	0.008	22.23	1.212	18	
Fe-MIL-88NH ₂	0.284	2.06	10.47	7.04	19	
FeO _x @SHSs-0.05	0.076	0.154	8.590	8.312	This work	

 Table S2. Comparison of the catalysis kinetic parameters of various Fe-based

 nanozymes.

Nanozyme	H ₂ O ₂		Glucose		
	linear detection range (µM)	detection limit (µM)	linear detection range (µM)	detection limit (µM)	Ref.
Go-Fe ₃ O ₄	1–50	0.32	2-200	0.74	2
Casein-Fe ₃ O ₄	0.5-200	0.20	3-1000	1.00	3
Fe ₃ O ₄ @C	0.2–100	0.08	6-100	2.00	4
Fe3O4@C YSNs	1-20	0.39	1-10	1.12	5
Fe-MSN	7.2–100	1.20	4.1–100	1.20	6
Fe _{0.5} Co _{0.5} NPs	/	/	0.5–10	0.01	7
Fe ₃ O ₄ -MMT	50-200	5.10	50-200	5.10	8
Mesoporous g- Fe ₂ O ₃	/	/	1-1000	0.90	9
FeNPs@Co ₃ O ₄ HNCs	0.1–30	0.01	0.5–30	0.05	10
3D GN with Fe ₃ O ₄ NPs	/	/	5-500	0.80	11
Fe@PCN-224	2-100	1.60	30-800	22	20
Fe-MOF-GOx	/	/	1-500	0.487	13
GOx@HP-MIL- 88B-BA	/	/	2-100	0.98	14
Co ₃ O ₄ @Co-Fe	0.02-600	0.02	/	/	16
2Fe ₂ O ₃ /30Pt/CNTs	/	/	5-20	0.92	17
MoS2-MIL- 101(Fe)	0.01-20	0.01	0.01–15	0.01	18
Fe-MIL-88NH2	0.2–200	/	2-300	0.48	19
FeOx@SHSs-500	25-200	0.41	5-600	0.24	This work

Table S3. Comparison of the detection limit (LOD) of H_2O_2 and glucose using differentFe-based nanozymes.

References for Supporting

- L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang and S. J. N. n. Perrett, 2007, 2, 577-583.
- Y.-l. Dong, H.-g. Zhang, Z. U. Rahman, L. Su, X.-j. Chen, J. Hu and X.-g. Chen, Nanoscale, 2012, 4, 3969-3976.
- Y. Liu, M. Yuan, L. Qiao and R. Guo, *Biosensors Bioelectronics*, 2014, 52, 391-396.
- 4. Q. Li, G. Tang, X. Xiong, Y. Cao, L. Chen, F. Xu and H. Tan, Sensors Actuators B: Chemical, 2015, 215, 86-92.
- N. Lu, M. Zhang, L. Ding, J. Zheng, C. Zeng, Y. Wen, G. Liu, A. Aldalbahi, J. Shi and S. Song, *Nanoscale*, 2017, 9, 4508-4515.
- M. Aghayan, A. Mahmoudi, M. R. Sazegar, N. G. Hajiagha and K. Nazari, New Journal of Chemistry, 2018, 42, 16060-16068.
- Y. Chen, H. Cao, W. Shi, H. Liu and Y. Huang, *Chemical Communications*, 2013, 49, 5013-5015.
- K. Wu, X. Zhao, M. Chen, H. Zhang, Z. Liu, X. Zhang, X. Zhu and Q. Liu, New Journal of Chemistry, 2018, 42, 9578-9587.
- M. K. Masud, J. Kim, M. M. Billah, K. Wood, M. J. Shiddiky, N.-T. Nguyen, R. K. Parsapur, Y. V. Kaneti, A. A. Alshehri and Y. G. Alghamidi, *Journal of Materials Chemistry B*, 2019, 7, 5412-5422.
- J. Zhao, W. Dong, X. Zhang, H. Chai and Y. Huang, Sensors Actuators B: Chemical, 2018, 263, 575-584.

- Q. Wang, X. Zhang, L. Huang, Z. Zhang and S. Dong, ACS applied materials interfaces, 2017, 9, 7465-7471.
- B. Shi, Y. Su, L. Zhang, M. Huang, X. Li and S. Zhao, *Nanoscale*, 2016, 8, 10814-10822.
- W. Xu, L. Jiao, H. Yan, Y. Wu, L. Chen, W. Gu, D. Du, Y. Lin and C. Zhu, ACS applied materials interfaces, 2019, 11, 22096-22101.
- Z. Zhao, Y. Huang, W. Liu, F. Ye and S. Zhao, ACS Sustainable Chemistry Engineering, 2020, 8, 4481-4488.
- M. S. Kim, J. Lee, H. S. Kim, A. Cho, K. H. Shim, T. N. Le, S. S. A. An, J. W. Han,
 M. I. Kim and J. Lee, *Advanced Functional Materials*, 2020, **30**, 1905410.
- Q. Chen, X. Zhang, S. Li, J. Tan, C. Xu and Y. Huang, *Chemical Engineering Journal*, 2020, 125130.
- Y. Chen, Q. Yuchi, T. Li, G. Yang, J. Miao, C. Huang, J. Liu, A. Li, Y. Qin and L. Zhang, *Sensors Actuators B: Chemical*, 2020, 305, 127436.
- W. Dong, G. Chen, X. Hu, X. Zhang, W. Shi and Z. Fu, *Sensors Actuators B:* Chemical, 2020, **305**, 127530.
- 19. Y. L. Liu, X. J. Zhao, X. X. Yang and Y. F. Li, Analyst, 2013, 138, 4526-4531.
- 20. T. Li, P. Hu, J. Li, P. Huang, W. Tong and C. Gao, *Colloids Surfaces A: Physicochemical Engineering Aspects*, 2019, **577**, 456-463.