Electronic supporting information

Highly Fluorescent Nitrogen and Boron Doped Carbon Quantum Dots for Selective and Sensitive Detection of Fe³⁺

Yunhao Zhang^{a, ‡}, Hongxin Qin^{a, ‡}, Yuting Huang^a, Feng Zhang^a, Hairong Liu^a, Hongbo Liu^{a, b}, Zijun Wang^c, Run Li^{*, a, b}

^a College of Material Science and Engineering, Hunan University, Hunan, Changsha 410082, China

^b Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Hunan, Changsha 410082, China.

^c Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.

E-mail: lirun@hnu.edu.cn

Fig. S1 TEM and high resolution-TEM images of BNCQD (a, b) and NCQD (c, d). Insert of (a) and (c) are the corresponding size distribution.

Fig. S2 XRD patterns of B_1N_2CQD , BNCQD, NCQD and BCQD.

Fig. S3 High-resolution XPS C 1s (a), O 1s (b), N 1s (c) and B 1s (d) peaks of BNCQD.

Fig. S4 XPS survey spectra (a) and detailed high-resolution C 1s (b), N 1s (c) and O 1s (d) peaks of NCQD.

Sample name	Carbon (at%)	Oxygen (at%)	Nitrogen (at%)	Boron (at%)
B ₁ N ₂ CQD	67.02	19.75	13.04	0.20
BNCQD	68.44	19.12	12.33	0.11
NCQD	66.61	23.69	9.7	-

Table S1. Elementary composition of three different carbon quantum dots based on XPS measurement.

Fig. S5 FTIR spectrum of BCQD

Fig. S6 Steady-state fluorescence spectra of BNCQD under various excitation

wavelengths.

Fig. S7 Steady-state fluorescence spectra of BCQD under various excitation

wavelengths.

Fig. S8 Steady-state fluorescence spectra of NCQD under various excitation

wavelengths.

Fig. S9 Photographs of CQDs in aqueous solution under visible light (a) and UV beam of 365 nm. From left to right are B₁N₂CQD (1), BNCQD (2), NCQD (3) and BCQD (4),

Fig. S10 UV-Vis (a) and steady-state fluorescence (b, c) spectra of B_1N_2CQD , NCQD, BCQD and the mixture of BCQD and NCQD. (b) and (c) are excited at 340 and 400 nm, respectively. The mixture of BCQD and NCQD consist of 50% BCQD and 50% NCQD.

Fig. S11 (a) Fluorescence spectra of BNCQD upon the addition of various concentrations of Fe³⁺ from 0 to 160 uM. (b) Linear relationship between F₀/F and the concentration of Fe³⁺, where F₀ and F are the emission intensity in the absence and presence of Fe³⁺,

Fig. S12 (a) Fluorescence spectra of NCQD upon the addition of various concentrations of Fe³⁺ from 0 to 160 uM. (b) Linear relationship between F₀/F and the concentration of Fe³⁺, where F₀ and F are the emission intensity in the absence and presence of Fe³⁺,

Fig. S13 (a) Fluorescence spectra of BCQD upon the addition of various concentrations of Fe³⁺ from 0 to 160 uM. (b) Linear relationship between F₀/F and the concentration of Fe³⁺, where F₀ and F are the emission intensity in the absence and presence of Fe³⁺,

Fig. S14 Time-resolved fluorescence decays for B_1N_2CQD after additions of various

concentrations of Fe³⁺.

Fig. S15 Photograph of B₁N₂CQD under 254 nm UV light irradiation after adding various

kind of metal ions.

Fig. S16 (a) Fluorescence spectra of B_1N_2CQD after 365 nm UV light irradiation. (b) Linear relationship between F/F_0 and the irradiation time, where F_0 and F are the emission intensity before and after UV light irradiation, respectively.

Fig. S17 (a) Fluorescence spectra of B_1N_2CQD in the condition of various concentrations of NaCl from 0 to 1.0 M. (b) Linear relationship between F/F_0 and the concentration of NaCl, where F_0 and F are the emission intensity in the absence and presence of NaCl, respectively.

Fig. S18 (a) Fluorescence spectra of B_1N_2CQD in various pH value from 1 to 14. (b) Normalized fluorescence intensity in different pH value.

Entry	Fluorescent	Carbon source	Linear	LOD	Reference
	Probes		range		
1	BNCQDs	Ascorbic acid + 4-	0-700 uM	7.5 uM	1
		aminobenzenebornic			
		acid			
2	N-doped	Alginic acid +	0-50 uM	10.98 uM	2
	CDs	ethanediamine			
3	N-CDs	Chionanthus retusus	0-2 uM	70 nM	3
		fruit extract			
4	B-CDs	Glucose + boric acid	0-16 uM	242 nM	4
5	CDs	citric acid + 1,10-	0-50 uM	35 nM	5
		phenanthroline			
6	GN-CDs	Gallic acid + o-	0-50 uM	800 nM	6
		phenylenediamine			
7	CDs	Folic acid	0-400 uM	2 uM	7
8	CDs	Boswellia	0-500 uM	0.41 uM	8
		<i>ovalifoliolata</i> bark			
		extract			
9	N-CQDs	Watermelon juice	0-300 uM	160 nM	9
10	C-QDs	Citric acid + Tris	0-50 uM	1.3 uM	10
11	B ₁ N ₂ CQD	citric acid + boric	0-160 uM	80 nM	This work
		acid +			
		ethylenediamine			

Table S2. Comparison of CQDs-based sensors for Fe ³⁺ detect	ion.
--	------

Reference

- 1. L. Wang, J. S. Chung and S. H. Hur, *Dyes Pigm.*, 2019, **171**, 107752.
- 2. Y. Liu, Y. Liu, S.-J. Park, Y. Zhang, T. Kim, S. Chae, M. Park and H.-Y. Kim, *J. Mater. Chem. A*, 2015, **3**, 17747-17754.
- 3. R. Atchudan, T. N. J. I. Edison, D. Chakradhar, S. Perumal, J.-J. Shim and Y. R. Lee, *Sens. Actuators B: Chem.*, 2017, **246**, 497-509.
- 4. F. Wang, Q. Hao, Y. Zhang, Y. Xu and W. Lei, *Microchim. Acta*, 2016, 183, 273-279.
- A. Iqbal, Y. Tian, X. Wang, D. Gong, Y. Guo, K. Iqbal, Z. Wang, W. Liu and W. Qin, Sens. Actuators B: Chem., 2016, 237, 408-415.
- 6. S. Pang and S. Liu, Anal. Chim. Acta, 2020, 1105, 155-161.
- 7. C. Shen, Y. Sun, J. Wang and Y. Lu, *Nanoscale*, 2014, 6, 9139-9147.
- 8. G. Venkatesan, V. Rajagopalan and S. N. Chakravarthula, *J. Environ. Chem. Eng.*, 2019, 7, 103013.
- 9. M. Lu, Y. Duan, Y. Song, J. Tan and L. Zhou, J. Mol. Liq., 2018, 269, 766-774.
- 10. M. Zhou, Z. Zhou, A. Gong, Y. Zhang and Q. Li, *Talanta*, 2015, **143**, 107-113.