Supplementary materials

Amplified Oxidative Stress Therapy of Degradable Copper Phosphate Nanozyme Coated by in situ Polymerization of PEGDA

Ning Nie,†^a Yifan Liu,†^a Bing Li,^{a,c} Zhentao Hua,^{a,c} Jianfeng Liu,*^{a,b} Jinjian Liu,*^b Wei Wang*^a

^aLab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China ^bTianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China

^cState Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China †The authors contributed equally to this work

Keywords: copper phosphate, nanozymes, oxidative stress therapy, photothermal therapy;

Fig. S1 High-resolution TEM image of the Cu₃(PO₄)₂. Page 3.

Fig. S2 XRD pattern of $Cu_3(PO_4)_2$. Page 3.

Fig. S3 Zeta potential of Cu₃(PO₄)₂ and Cu₃(PO₄)₂@PEGDA. Page 3.

Fig. S4 SEM image of the $Cu_3(PO_4)_2$ after five cycles of on-off laser irradiation procedure (808 nm, 2.0 W/cm²). Page 3.

Fig. S5. Optical microscopy images of HUVEC cells stained by trypan blue. Scale bars: $100 \mu m$. Page 4.

Fig. S6 Release profiles of Cu ions from $Cu_3(PO_4)_2$ and $Cu_3(PO_4)_2$ @PEGDA soaked in citric acid-Na₂HPO₄ buffer (pH=5.6). Page 4.

Fig. S7 Typical UV-Vis spectra and inset of TMB-H₂O₂-Cu₃(PO₄)₂@PEGDA reaction system (50 μ L of 25 mM TMB, 50 μ L of 25 mM H₂O₂, 50 μ L of 1 mg/mL Cu₃(PO₄)₂@PEGDA, 2350 μ L of citric acid-Na₂HPO₄ buffer solution). Page 4.

Fig. S8 Typical UV-Vis spectra of TMB-H₂O₂-Cu₃(PO₄)₂@PEGDA reaction system before and after laser irradiation for 30 min in citric acid-Na₂HPO₄ buffer solution (pH=3.2) (0.5 mM TMB, 0.5 mM H₂O₂, 20 μ g/mL Cu₃(PO₄)₂@PEGDA). Page 5.

Fig. S9 (a) Concentration-dependent GSH depletion and (b) GSH consumption rate by $Cu_3(PO_4)_2$ @PEGDA nanozyme. Page 5.

Fig. S10 (a) Concentration-dependent GSH depletion and (b) GSH consumption rate by $Cu_3(PO_4)_2$ nanozyme. Page 5.

Fig. S11 Reaction of GSH with the generated ·OH-induced enhancement of Fentonlike reaction. Page 6.

Fig. S12 Hematological indicators of WBCs (a), RBCs (b), HGB (c), HCT (d), MCH (e), MCV (f), MCHC (g), and PLT (h) of mice on the 1st and 10th day after treatment. Page 6.

Fig. S13 Microscopy images of tissue sections (heart, liver, spleen, lung, and kidney) stained by H&E sampled at the 20th day of the anti-tumor treatment. Scale bar: 100 μ m. Page 7.

Table S1 The XPS peak area analysis results of $Cu_3(PO_4)_2$. Page 7. Equation S1-5. Page 7.

Fig. S1 High-resolution TEM image of the $Cu_3(PO_4)_2$.

 $\label{eq:cu_3} \begin{array}{c} \mathsf{Cu_3}(\mathsf{PO_4})_2 & \mathsf{Cu_3}(\mathsf{PO_4})_2 @\mathsf{PEGDA} \end{array}$ Fig. S3 Zeta potential of $\mathsf{Cu_3}(\mathsf{PO_4})_2$ and $\mathsf{Cu_3}(\mathsf{PO_4})_2 @\mathsf{PEGDA}.$

Fig. S4 SEM image of the $Cu_3(PO_4)_2$ after five cycles of on-off laser irradiation procedure (808 nm, 2.0 W/cm²).

Fig. S5 Optical microscopy images of HUVEC cells stained by trypan blue. Scale bars: 100 μm.

Fig. S6 Release profiles of Cu ions from Cu₃(PO₄)₂ and Cu₃(PO₄)₂@PEGDA soaked in citric acid-Na₂HPO₄ buffer (pH=5.6).

Fig. S7 Typical UV-Vis spectra and inset of TMB-H₂O₂-Cu₃(PO₄)₂@PEGDA reaction system (50 μL of 25 mM TMB, 50 μL of 25 mM H₂O₂, 50 μL of 1 mg/mL Cu₃(PO₄)₂@PEGDA, 2350 μL of citric acid-Na₂HPO₄ buffer solution).

Fig. S8 Typical UV-Vis spectra of TMB-H₂O₂-Cu₃(PO₄)₂@PEGDA reaction system before and after laser irradiation for 30 min in citric acid-Na₂HPO₄ buffer solution (pH=3.2) (0.5 mM TMB, 0.5 mM H₂O₂, 20 μg/mL Cu₃(PO₄)₂@PEGDA).

Fig. S9 (a) Concentration-dependent GSH depletion and (b) GSH consumption rate by Cu₃(PO₄)₂@PEGDA nanozyme.

Fig. S10 (a) Concentration-dependent GSH depletion and (b) $\overline{\text{GSH}}$ consumption rate by $\text{Cu}_3(\text{PO}_4)_2$ nanozyme.

Fig. S11 Reaction of GSH with the generated ·OH-induced enhancement of Fentonlike reaction.

Fig. S12 Hematological indicators of WBC (a), RBC (b), HGB (c), HCT (d), MCH (e), MCV (f), MCHC (g), and PLT (h) of mice performed on the 1st and 10th day of the treatment.

Fig. S13 Microscopy images of tissue sections (heart, liver, spleen, lung, and kidney) stained by H&E sampled at the 20th day of the anti-tumor treatment. Scale bar: 100 μm.

Spectrum	Area (P) CPS.eV	RSF	Area/RSF	Atomic ratio
Cu 2p	829775.34	3.38	245495.6627	2.953287633
Р 2р	58188.36	0.35	166252.4571	2.000000001
O 1s	514725.98	0.71	724966.169	8.721268626

Table S1 The XPS peak area analysis results of $Cu_3(PO_4)_2$.

$\theta = \frac{T - T_{surr}}{T_{max} - T_{surr}}$	Equation S1
$\tau_s = \frac{t}{-ln\theta}$	Equation S2
$hS = \frac{cm}{\tau_s}$	Equation S3
$Q_{dis} = hS(T_{max} - T_{surr})$	Equation S4
$\eta = \frac{hS(T_{max} - T_{surr})}{I(1 - 10^{-A_{S08}})}$	Equation S5

In Equation S1-5, *T* is an instant temperature of the time (t), T_{surr} is initial particle temperature, T_{max} is maximum temperature, *c* is specific heat capacity of water, *m* is the mass of the prepared Cu₃(PO₄)₂-water dispersion (3.75 mg/mL), *h* is heat-transfer coefficient, *S* is the area cross section perpendicular to conduction, and the value of *hS* is obtained from the Equation S1-3. The Q_{dis} represents external heat flux in the system. *I* is incident laser power density (2.5 W/cm²), and A_{808} is the absorbance intensity of the Cu₃(PO₄)₂-water dispersion at 808 nm which was measured as shown in Fig. 2f. η is the photothermal conversion efficiency, which was calculated by Equation S5.