Supporting information of

Double-layer dura mater based on poly(caprolactoneco-lactide) film and polyurethane sponge: preparation, characterization, and biodegradation study

Shu Jin,^a Yuji Pu,^b Zhaoyuan Guo,^b Wangwei Zhu,^b Sai Li^a*, Xi Zhou,^c Wenxia Gao,^d and Bin He^b*

^a School of Chemical Engineering, Sichuan University, Chengdu 610065, China

^b National Engineering Research Center for Biomaterials, College of Biomedical

Engineering, Sichuan University, Chengdu 610064, China

^c Ningbo Baoting Biotechnology Co., Ltd, Ningbo 315001, China

^d College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China

E-mail: lisai@scu.edu.cn; bhe@scu.edu.cn

Figure S1. Tensile splines for mechanical properties research.

	Feeding w	veight(g)	Theoretical	Actual molar
Samples	LLA ($M=144 \text{ g} \cdot \text{mol}^-$	CL (<i>M</i> =114 g⋅mol ⁻	molar ratio of	ratio of LLA /
	¹)	¹)	LLA / CL	CL(¹ H-NMR)
PCLA(75:25)	108	28.5	75/25	78.74/21.26
PCLA(70:30)	100.8	34.2	70/30	73.53/26.47

Table S1 Theoretical and actual composition of PCLA.

Figure S2. GPC traces of polymers in this study: (A) Before degradation; (B) After degradation

Wavenumber (cm ⁻¹)		Groups	
	2998	symmetrical stretching vibration of -CH-	
	2944	antisymmetric stretching vibration of -CH-	
	1457	flexural vibration of -CH-	
Figure 2A	1386	flexural vibration of -CH ₃	
	755	flexural vibration of -CH ₂ -	
	1760	stretching vibration of C=O	
	1186,1135	stretching vibration of C-O	
	1143,1132	stretching vibration of C-O	
	2875	asymmetric stretching of -OCH ₂ -	
	949	blending peak of -CH ₂ -CH ₂ -O	
	1096	asymmetric stretching of C-O-C	
	1044	symmetric stretching of C-O-C	
	1734	stretching vibration of C=O in PCL	
Figure 2B	1246	stretching vibration of C-O-C	
	1756	stretching peak of C=O in PLA	
	1249	asymmetric stretching of OC-O-C	
	1187	stretching peak of OC-O	
	754	bending peak of OC-O-	
	1453	asymmetric bending peak of -CH ₃	
	1723	free C=O of the carbamate group in PU	

 Table S2 FTIR results of the materials.

 Table S3 Molecular properties of polymers.

Polymers	$M_{ m w}(10^3)$	$M_{\rm n}(10^3)$	$M_{ m w}/M_{ m n}$	Appearance
PCLA(75:25)	67.1	48.0	1.40	flocculent solid
PCLA(70:30)	61.5	44.5	1.38	flocculent solid
PU	29.7	18.5	1.61	flocculent solid

 Table S4 Molecular weight of polymers before and after in vitro degradation.

	Molecular weight	Molecular weight	
Samples	before degradation ^a	after degradation ^a	Reduction rate (%)
	(10 ³)	(10 ³)	
Film(75:25)	67.1	57.9	14.7
Film(70:30)	61.5	43.6	29.1
Sponge	42.1	29.7	29.4

a. Determined by GPC.

Samples	Water absorption rate at 10 min	
	(%)	
Film(75:25)	0.80	
Film(70:30)	1.14	
Sponge	586	
Film(75:25)@Sponge	490	
Film(70:30)@Sponge	531	

 Table S5 Water absorption rates of different materials at 10 min.

Figure S3. Changes in water absorption speed of materials: (A) Film(75:25)@Sponge; (B) Film(70:30)@Sponge; (C) Film(75:25); (D) Film(70:30).