<u>Supporting Information for</u> <u>Getting Control of Hydrogel Networks with Cross-Linkable Monomers</u>

Pamela G. Cohn^{1*}, Sahar Qavi², Jasmine Cubuk¹, Mihir Jani¹, Mohamed Lamine Megdad¹, Dhvani Shah¹, Cara Cattafi¹, Panchatapa Baul¹, Shanthi Rajaraman¹, and Reza Foudazi^{2*}

¹Chemistry Program, Stockton University, Galloway, NJ 08205; ²Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003.

Experimental

General

Nuclear Magnetic Resonance (NMR) spectra were recorded on a 400 MHz Bruker Ascend NMR magnet at 24 °C. Chemical shifts are reported in parts per million (ppm) with reference to Dimethyl sulfoxide (d^{6} -DMSO) and water (D₂O) or chloroform (CDCl₃) and deuterated methanol (CD₃OD) as the solvent. Multiplicities are abbreviated as followed: singlet (s), doublet (d), triplet (t), multiplet (m). Thin Layer Chromatography was done on a 3 by 1inch MF254 silica plate, pH 5, with an alumina backing. The eluent used was made of 90% dichloromethane with 10% ethanol. All solids were dissolved in 50% dichloromethane / methanol, methanol, dichloromethane, ethanol or dichloromethane/ethanol. Centrifugation used to separate materials. Beckman Coulter Avanti J-265 XP at 19°C run at JS745 at 2000 rpm for 5 minutes. The compounds were centrifuged with four mini 50 mL centrifuge tubes. Infrared Spectroscopy (IR) spectra were recorded on a NicoletiS5 using an Id5 ATR diamond. The bands are recorded in wavenumbers (cm⁻¹). Freeze-drying of the materials was done on a LABCOND Freezeone 6 plus Lyophilize Machine. Chiller was set to -60°C. Vacuum set to high with mBAR ~0.42 mBAR. Freezer's lowest temp chilled to -87°C.

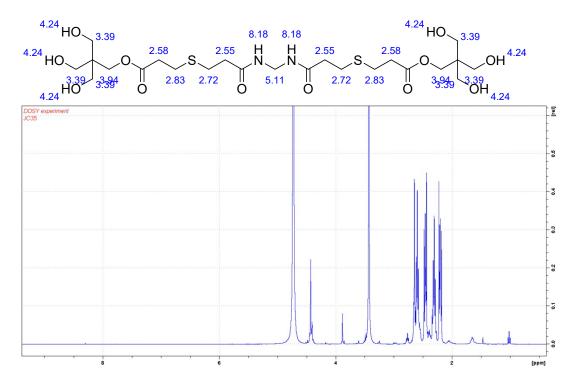
Differential scanning calorimetry analysis was performed on gels using a Q20 TA instrument. After loading the sample into the calorimeter, the temperature the pans were cooled to -50 °C and heated at 5 °C/ min.

Frequency Sweep rheological measurements were performed on the gels using a TA Discovery HR-3 rheometer with an objective with cross-hatch geometry.

The compressive stress–strain measurements were performed on hydrogels swollen with DI water by using a Shimadzu universal testing machine (AGS-X Series) at a crosshead speed of 1 mm/min. The cylindrical gel samples were 20 mm in diameter and 10 mm in thickness.

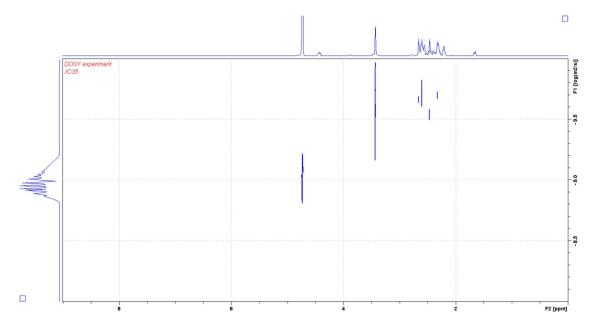
All reagents (N,N'-methylenebis(acrylamide), pentaerythritol(tetrakis(3-mercaptopropionate), 4,4'azobis(4-cyanovaleric acid) were purchased from Sigma Aldrich Chemical Company. All solvents for reactions, purification, and spectroscopic analyses (absolute ethanol, dichloromethane, methanol) were purchased from ThermoFisher Scientific.

Representative Synthesis of Poly(MBA-*co***-PTK):**

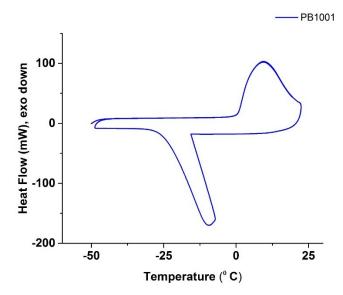

2:1, thiol:ene:

Absolute ethanol (50 mL) was degassed in a 100 mL round bottom flask (RBF) with nitrogen for 1 h. N, N'-methylenebis(acrylamide)(MBA), (1.000 g, 6.48 mmol) and 4,4'-Azobis (4-cyanovaleric acid)(0.05 g, 0.178 mmol) were placed in a 100 mL round bottom flask with a magnetic stir bar. The system was purged with argon gas for 5 min. Pentaerythritol tetrakis(3-mercaptopropionate) (PTK) (2.47 mL, 6.46 mmol) was

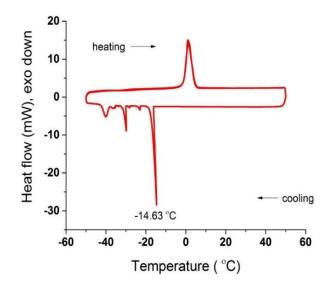
added via syringe. Degassed ethanol (10 mL) was also added via syringe, and the resulting solution was heated to 70 °C and stirred for 16 h. The resulting rubber-like copolymer poly(MBA-*co*-PTK)) was triturated with ethanol (100 mL), stirred and sonicated and vacuum filtered. The product gelled and was triturated with absolute ethanol, followed by deionized water. The gel was freeze-dried and characterized via thermal analysis, swelling measurements, and rheo-mechanical testing.


<u>S1A:</u> JC35 (2:1, thiol:ene, D₂O, 400 MHz) NMR analysis:

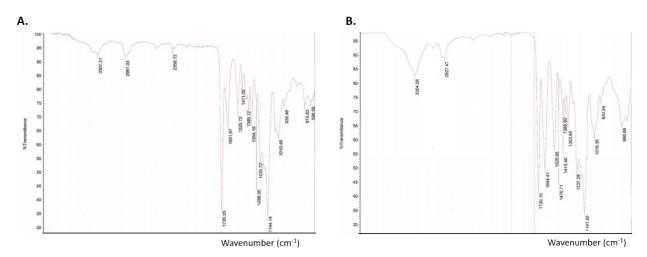
In the sample containing a 2:1 composition of thiol:ene groups, there is no presence of the vinyl end group in the spectrum. The spectrum would suggest the structure is comprised of the di-substituted thiol-ene adduct, which is consistent with the following hydrolysis product (with ChemDraw chemical shifts indicated in blue on the structure):



<u>S1B:</u> DOSY NMR analysis of 2:1 (thiol:ene) gel in D_2O (400 MHz)


The DOSY NMR spectrum (at pH~10) shows one major diffusion coefficient at -9.7 (log(m^2/s)) in addition to residual water.

Differential Scanning Calorimetry of Different Gel Compositions and their crystallization exotherms: **S2 A:** 1:1, thiol:ene, DSC (scan rate 10 °C/ min)



<u>S2B</u>: 4:1, thiol:ene, DSC (scan rate 10 °C/ min)

<u>S3:</u> Infrared Spectra for 2:1 Gel composition before and after swelling

The infrared spectra of both wet and dry states for the 2:1, thiol:ene composition of gel were unremarkable. The presence of the free thiol groups is indicated by a small broad S-H stretch at ~2600 cm⁻¹. Additionally, the amidic carbonyl stretch at 1650 cm⁻¹ (from MBA) and the ester carbonyl stretch (from PTK) at 1730 cm⁻¹ suggest incorporation of both monomers in to the gel network. Upon the addition of water, the only noticeable change is the broadened O-H stretch at 3304 cm⁻¹, which is indicative of hydrogen bonding in the material.

The infrared spectrum (neat) for the A) 2:1, thiol:ene, PTK: MBA, dry state for the gel; B) 2:1, thiol:ene, PTK: MBA, wet state after swelling in water for 24 h.

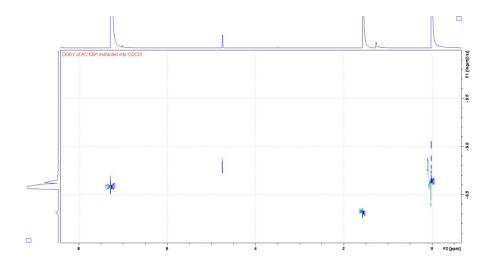
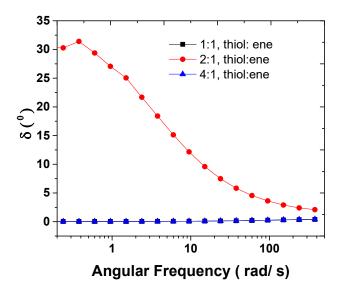

Signal	Chemical Shift (ppm)	Number Hydrogens	Multiplicity (J ³ in Hz)	Group
А	5.3183-5.9468	3	m	-CH (alkenyl, overlapping signals)
В	4.1772-4.2942	8	S	-CH ₂ O-
С	3.2628-3.6832	18	S	(overlapping signals)
D	2.0761-2.3442	56	m	(overlapping signals)
Е	1.8631	2	t (J = 6.8 Hz)	$-CH_2CH_2$ -
F	1.4666	2	t (J = 6.8 Hz)	$-CH_2CH_2$ -

Table 1. Spectral Assignment for Hydrogel with 1:1, thiol: ene functionality.

<u>S4A</u>: Standard Curve for DOSY NMR (CDCl₃, 400 MHz) for polystyrene standard compounds of MW (g/ mole) of 2500, 5000, 9000, 30000, 50000:

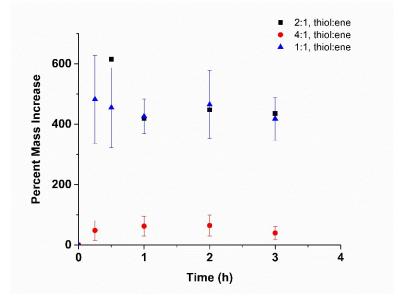
<u>S4B</u>: DOSY NMR Spectrum of 1:1, thiol:ene gel after basic degradation and extraction into $CDCI_3$ (400 MHz):


<u>S5:</u> Rheological Measurements:

All rheological measurements were performed with a Discovery Hybrid Rheometer (DHR3) from TA Instruments (New Castle, DE, USA). All experiments were carried out at constant temperature of 25 °C with a parallel plate geometry with a diameter of 40 mm and a gap between plates of 1 mm and using a solvent trap to avoid solvent evaporation. Dynamic frequency sweep was done at ω =0.1-1000 rad/s in the linear viscoelastic regime with constant strain of 1%.

G=nRT , we know R=8.314 J/mol.K and T=25 $^{\circ}\text{C}$ =298.15 K

2:1, thiol: ene in chloroform ---> $G=2 \times 10^5$ ---> $n=80.68 \sim 81$ 2:1, thiol: ene in water---> $G=10^4$ ---> $n=4.03 \sim 4$ % of chemical crosslinks= $4/81 \times 100 = 4.94\% \sim 5\%$ % of physical crosslinks= $(81-4)/81 \times 100 = 95.06\% \sim 95\%$


4:1, thiol: ene in chloroform ---> $G=10^5$ ---> $n=40.34 \sim 40$ 4:1, thiol: ene in water---> $G=5 \times 10^3$ ---> $n=2.02 \sim 2$ % of chemical crosslinks= $2/40 \times 100 = 5\%$ % of physical crosslinks= $(40-2)/40 \times 100 = 95\%$

 δ measurements from frequency sweep measurements for various thiol:ene gel compositions in water.

<u>S6:</u> *Kinetic Swelling Measurements for hydrogels:*

Swelling measurements based on mass uptake of water were taken on ~ 0.100 g samples of freeze-dried gels over time as they were immersed in deionized water at room temperature.

