Supporting Information

Heterogenous hydrogel mimicking the osteochondral ECM

applicable to tissue regeneration

Zhuoxin Chen,^{a,1} Hong Xiao,^{b,1} Hongbo Zhang,^a Qiangwei Xin,^a Haochen Zhang,^a Haixin Liu,^c Mingzhen Wu,^a Liangrui Zuo,^a Jun Luo,^a Qiang Guo,^d Chunmei Ding,^{a,e*} Hong Tan,^a Jianshu Li^{a,d,f,*}

^a College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.

^b Department of Pain Management, West China Hospital, Sichuan University, No. 37, GuoXue Xiang, Chengdu 610041, China.

^c Department of Orthopedics, People's Hospital of Deyang City, No.173, Taishan North Road, Deyang 618000, China

^d State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,

Sichuan University, Chengdu 610041, China.

e CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical

Institute of Physics and Chemistry, Beijing 100190, China

^fMed-X Center for Materials, Sichuan University, 610041, China.

¹Zhuoxin Chen and Hong Xiao contributed equally to this work.

*Corresponding Author:

E-mail address: dingcm@scu.edu.cn (C. D.), jianshu_li@scu.edu.cn (J. L.)

MC3T3 cells	Group	AAm (wt.%)	VPA (wt.%)	Alginate (wt.%)	MBAA (wt.%)	Iragcure 2959 (wt.%)		Mineral ized	
	pAAm	15	0	1	1	0.5		No	
	pAAm-VPA	13.5	1.5	1	1	0.5		No	
	pAAm-VPA @M	13.5	1.5	1	1	0.5		Yes	
chondro cytes	Group	GelMA	AGA	PEGDA	A CaC	2l ₂	Iragcure 2959		
		(wt.%)	(wt.%)	(wt.%)	(mN	(mM)		(wt.%)	
	PEGDA	0	0	15	100	100		0.5	
	GelMA	15	0	0	100	100		0.5	
	GelMA-AGA	14	1	0	100	100		0.5	

Table S1. Formulas for *in vitro* cell study.

Gene	Primer sequences			
GAP-Forward	TTCAACGGCACAGTCAAG			
GAP-Reverse	TACTCAGCACCAGCATCA			
OCN-Forward	GCAGTAAGGTGGTGAATAGA			
OCN-Reverse	AACGGTGGTGCCATAGAT			
COL1a1-Forward	CGAGTATGGAAGCGAAGG			
COL1a1-Reverse	GCAGTGATAGGTGATGTTCT			
Runx2-Forward	CTTCGTCAGCGTCCTATC			
Runx2-Reverse	CTTCCATCAGCGTCAACA			
ACAN-Forward	CGAGTGAACAGCATCTACC			
ACAN-Reverse	GAGTCATTGGAGCGAAGG			
COL2a1-Forward	CAGCAAGAGCAAGGAGAA			
COL2a1-Reverse	GGACAGTAGACGGAGGAA			
SOX9-Forward	CCAGAGAACGCACATCAA			
SOX9-Reverse	GTGGTCGGTGTAGTCATAC			

 Table S2. The sequences of primers used for real-time PCR

Figure S1. Frequency sweep for double layer hydrogel when the bottom layer was pre-irradiated for a) 3 min, b) 5 min and c) 7 min respectively

Figure S2. Frequency sweep for a) upper, b) bottom, c) double layer hydrogel without chelation, d) double layer hydrogel after mineralization respectively.

Figure S3. (a) Photographs of native bilayer hydrogel and lyophilized hydrogel. (b) Swelling ratio of single and double layer hydrogels (n=4).

Figure S4. 3D reconstruction of hydrogel showing the pore interconnectivity.

Figure S5. SEM images of double layer hydrogel of different sites, which illustrates the porosity of hydrogel.

Figure S6. Fluorescence microscopic images of chondrocytes cultured on upper layer hydrogels for 7 days. Scale bar: 50 μm and 25 μm.

Figure S7. Body weight of SD rats in different groups post-surgery (n=3).

Figure S8. The weight of hydrogel at implantation of 1, 4, and 8 weeks

Figure S9. Score of HE stains in subcutaneous tissue (n=3).

Figure S10. (a) 3D reconstruction of samples for different groups (implantation area is colored red, scale bar: 5 mm). (b) The reconstructed VOI images of defect area for different groups (scale bar: 500 μ m). (c) Bone volume/total volume (BV/TV), (d) bone mineral density of total volume (BMD of TV) and (e) bone mineral density of bone volume (BMD of BV) calculated from Micro-CT results (n=4). Significances (p<0.5, p<0.01 and p<0.001) were suggested as asterisks (*, ** and ***).

Figure S11. Col-I stain of collected knee joints after 6 weeks of implantation (scale bar: 200 μm and 100 μm).

Figure S12. Col-II stain of collected knee joints after 6 weeks of implantation (scale bar: 200 μm and 100 μm).