Electronic Supplementary Information (ESI) for

Low-work-function LaB₆ for realizing photodynamicenhanced photothermal therapy

Shuanglong Tang, ‡^a Weicheng Huang, ‡^b Yan Gao, ^a Na An,^a Yadong Wu,^a Bin Yang, ^b Mei Yan *^a Jingyan Cao*^c and Chongshen Guo *^a

 ^a School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China. E-mail: chongshenguo@hit.edu.cn; meiyan@hit.edu.cn.
 ^b School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
 ^c Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150001, China. E-mail: caojingyan@126.com

Fig. S1 Digital photo of different-concentration LaB6 aqueous dispersions.

Fig. S2 XRD pattern of LaB₆ samples before and after NIR irradiation (3.64 W \cdot cm⁻²).

Fig. S3 ESR spectra of TEMP in the present of LaB_6 for 1O_2 detection.

Fig. S4 (a) Light absorption of ICG solution and LaB_6 dispersion, (b)-(d) the rate constants for DPBF decomposition by ICG at 808 nm and by LaB_6 at 808 nm and 1064 nm.

Fig. S5 Cell viability after incubation with LaB₆ at different concentrations for 24 h.

Fig. S6 Hematological data of the mice in different groups at 14th day. (1) Control, (2) NIR, (3) LaB₆, (4) NIR+LaB₆.

Fig. S7 H&E staining results of major organs from the mice in different groups.

Fig. S8 High resolution deconvoluted B 1s XPS.

Calculation of photothermal conversion efficiency^{1, 2}

The total energy balance for the system could be expressed as Equation S1 according to a well-established method.

$$\sum m_{d}c_{d}\frac{dT}{dt} = Q_{LaB_{6}} + Q_{dis} - Q_{surr}$$
(S1)

Herein, m_d and C_d are the mass and heat capacity of water, T is the temperature of LaB₆ aqueous dispersion, Q_{LaB6} is the energy inputted by LaB₆, Q_{dis} is energy inputted by the quartz cell (it was measured independently using a sample cell with water only). Q_{surr} is heat conduction away from the system.

Obviously, the NIR laser induced Q_{LaB6} could be calculated as follow:

$$Q_{LaB_{6}} = I \cdot (1 - 10^{-A_{880}}) \cdot \eta$$
(S2)

Here, I is the laser power (W), A_{880} is the optical absorbance of LaB₆ dispersion at 880 nm, and η is the photothermal conversion efficiency we want to obtain.

On the other hand, Q_{surr} is the thermal energy loss (Equation S3), which linearly increases with temperature difference between system and surrounding.

$$Q_{surr} = hA(T - T_{surr})$$
(S3)

In this equation, h is heat transfer coefficient, A is the surface area of the container, and T_{surr} is the surroundings temperature.

When kept the laser power to be constant, the value $(Q_{LaB6}+Q_{dis})$ is fixed. As the value of Q_{surr} increases with the increment of $(T-T_{surr})$, the system temperature would arrive at a maximum equilibrium temperature eventually when the input and output energies are equal. If we define the $Q_{LaB6} + Q_{dis}$ as $Q_{surr-max}$, we can obtain Equation S4.

$$Q_{LaB_6} + Q_{dis} = Q_{surr-max} = hA(T_{max} - T_{surr})$$
(S4)

In Equation S4, $Q_{surr-max}$ is heat conduction from the surface to air when the sample cell arrive at the maximum equilibrium temperature of T_{max} .

Then, we can obtain Equation S5 by substituting Equation S2 into Equation S4:

$$\eta = \frac{hA(T_{max} - T_{surr}) - Q_{dis}}{I(1 - 10^{-A_{880}})}$$
(S5)

To obtain the hA, a dimensionless driving force temperature of θ is defined with the maximum temperature of T_{max}

$$\theta = \frac{T - T_{surr}}{T_{max} - T_{surr}}$$
(S6)

Meanwhile, a time constant τ_s was defined as well as

$$\tau_{\rm s} = \frac{\sum m_{\rm d} c_{\rm d}}{hA} \tag{S7}$$

Then, Equation S1 was expressed by S6 and S7 and rearranged into Equation S8.

$$\frac{d\theta}{dt} = \frac{1}{\tau_{s}} \left[\frac{Q_{LaB_{6}} + Q_{dis}}{hA(T_{max} - T_{surr})} - \theta \right]$$
(S8)

At the natural cooling stage, no energy was inputted, $Q_{LaB6}+Q_{dis} = 0$, getting the Equation S9

$$dt = -\tau_s \frac{d\theta}{\theta}$$
(S9)

Equation S10 was derived from S9 by integration:

$$t = -\tau_{s} \ln \theta \tag{S10}$$

By plotting the t versus $\ln\theta$, the τ_s is determined as 106.53 s (Fig. 3e). Then, hA was calculated as 0.020 W·°C⁻¹ by Equation S7.

 Q_{dis} could be worked out in the same way via cell with water only.

$$Q_{dis} = Q_{surr-max-water} = (hA)_{water} (T_{max-water} - T_{surr}) = \frac{m_d c_d (T_{max-water} - T_{surr})}{\tau_{s-water}}$$
(S11)

 $\tau_{s-water}$ was determined to be 95.35 s (Fig. S9), ($T_{max-water} - T_{surr}$) was 3.8 °C, then Q_{dis} was calculated to be 0.084 W.

Finally, the all the obtained data of hA = 0.020 W·°C⁻¹, $(T_{max}-T_{surr}) = 24.8$ °C, I = 1.029 W, (1-10^{-A880}) = 0.953 were substituted in the Equation S5 and the η was calculated as 41.35%.

Fig. S9 The curve of time versus $-\ln(\theta)$ for water.

Reference

- [1] D. K. Roper, W. Ahn and M. Hoepfner, *The Journal of Physical Chemistry C*, 2007, **111**, 3636-3641.
- [2] H. Lin, X. Wang, L. Yu, Y. Chen and J. Shi, *Nano Letters*, 2017, **17**, 384-391.