Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Structural Control of Self-Healing Silica-Poly(Tetrahydropyran)-Poly(E-caprolactone) Hybrids

Wei Fan¹, Randall E. Youngman², Xiangting Ren¹, Donghong Yu^{1,*}, Morten M. Smedskjaer^{1,*}

¹ Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark

² Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA

* Corresponding authors. email: <u>yu@bio.aau.dk</u> (D.Y.), <u>mos@bio.aau.dk</u> (M.M.S.)

Fig. S1 ¹H-NMR spectrum of HOOC-PCL-COOH in CDCl₃.

Fig. S2 FT-IR spectra HO-PCL-OH and HOOC-PCL-COOH.

Fig. S3 Reaction mechanism of (a) THP cationic ring-opening polymerization; (b) hydrolysis of TEOS.

Fig. S4 Molecular structures of pure inorganic bulks compared through FTIR.

Fig. S5 ²⁹Si NMR spectra of inorganic bulks in different TEOS/H₂O molar ratios.

Fig. S6 TGA of hybrids with the same organic/inorganic compositions $Org_{0.7}Inorg_{0.3}$ with different silica structures.

Fig. S7 XRD of hybrids with the same organic/inorganic compositions but different silica structures.

Fig. S8 Load-depth curves for the loading-unloading of the five hybrids as measured by micro-indentation.

Figure S9. Indentation loading-unloading experiment of hybrids with different I/O ratios $(Org_{0.9}Inorg_{0.1}(T_1W_{3.6}); Org_{0.7}Inorg_{0.3}(T_1W_{3.6}); Org_{0.4}Inorg_{0.6}(T_1W_{3.6}))$ for up to 20 cycles.

Fig. S10 (a) The hardness of five hybrids tested by micro-indentation method; (b) Elasto-plastic deformation of hybrids at the maximum load.

Fig. S11 Optical microscope images of four hybrid compositions after creation of a defect (top view): (a) $Org_{0.9}Inorg_{0.1}(T_1W_{3.6})$; (b) $Org_{0.9}Inorg_{0.1}(T_1W_{5.4})$. After self-healing for 24 hours: (c) $Org_{0.9}Inorg_{0.1}(T_1W_{3.6})$; (d) $Org_{0.9}Inorg_{0.1}(T_1W_{5.4})$.

Fig. S12 Indentation test of hybrid $Org_{0.9}Inorg_{0.1}(T_1W_{1.8})$ before the induced crack (fresh samples) and after cracking and self-healing.

Fig. S13 Monitoring self-healing ability of hybrid $Org_{0.9}Inorg_{0.1}(T_1W_{1.8})$ at 37 °C.

Fig. S14 (a) Pictures of hybrids after immersion (A3-C3 respresent hybrids $Org_{0.7}Inorg_{0.3}(T_1W_{1.8})$; (b) $Org_{0.9}Inorg_{0.1}(T_1W_{3.6})$; $Org_{0.7}Inorg_{0.3}(T_1W_{3.6})$; $Org_{0.4}Inorg_{0.6}(T_1W_{3.6})$; and $Org_{0.7}Inorg_{0.3}(T_1W_{5.4})$, respectively); TGA curves of hybrids (b) $Org_{0.7}Inorg_{0.3}(T_1W_{1.8})$; (c) $Org_{0.4}Inorg_{0.6}(T_1W_{3.6})$; (d $Org_{0.7}Inorg_{0.3}(T_1W_{5.4})$ before and after immersed in PBS solution.

Fig. S15 Optical microscope images of hybrids before immersed in PBS (a) $Org_{0.7}Inorg_{0.3}(T_1W_{1.8})$; (b) $Org_{0.4}Inorg_{0.6}(T_1W_{3.6})$; (c) $Org_{0.7}Inorg_{0.3}(T_1W_{5.4})$; after immersed in PBS (d) $Org_{0.7}Inorg_{0.3}(T_1W_{1.8})$; (e) $Org_{0.4}Inorg_{0.6}(T_1W_{3.6})$; (f) $Org_{0.7}Inorg_{0.3}(T_1W_{5.4})$.

Types	TEOS (mol)	H ₂ O (mol)	TEOS (wt %)	PCL-diCOOH (wt%)
$Org_{0.9}Inorg_{0.1}(T_1W_{1.9})$	1	1.8	10	90
$Org_{0.8}Inorg_{0.2}(T_1W_{1.8})$	1	1.8	20	80
Org _{0.7} Inorg _{0.3} (T ₁ W _{1.8})	1	1.8	30	70
$Org_{0.6}Inorg_{0.4}(T_1W_{1.8})$	1	1.8	40	60
$Org_{0.4}Inorg_{0.6}(T_1W_{1.8})$	1	1.8	60	40
$Org_{0.9}Inorg_{0.1}(T_1W_{3.6})$	1	3.6	10	90
$Org_{0.8}Inorg_{0.2}(T_1W_{3.6})$	1	3.6	20	80
$Org_{0.7}Inorg_{0.3}(T_1W_{3.6})$	1	3.6	30	70
$Org_{0.6}Inorg_{0.4}(T_1W_{3.6})$	1	3.6	40	60
$Org_{0.4}Inorg_{0.6}(T_1W_{3.6})$	1	3.6	60	40
$Org_{0.9}Inorg_{0.1}(T_1W_{5.4})$	1	5.4	10	90
$Org_{0.8}Inorg_{0.2}(T_1W_{5.4})$	1	5.4	20	80
$Org_{0.7}Inorg_{0.3}(T_1W_{5.4})$	1	5.4	30	70
$Org_{0.6}Inorg_{0.4}(T_1W_{5.4})$	1	5.4	40	60
$Org_{0.4}Inorg_{0.6}(T_1W_{5.4})$	1	5.4	60	40

 Table S1. Compositions of different hybrids.