Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Substance P Containing Peptide Gene Delivery Vectors for Specifically Transfecting Glioma Cells Mediated by Neurokinin-1 Receptor

Guihua Ding^{a†}, Taoran Wang^{a†}, Zhenbin Han^a, Long Tian^a, Qin Cheng^{a,b}, Longlong Luo^a, Baoquan Zhao^a, Chenhong Wang^a, Siliang Feng^a, Lianshuai Wang^a, Zhao Meng^{*a}, Qingbin Meng^{*a,b}

^a State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.

^b Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain,
Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002.
Email: nankaimqb@sina.com; mengzhao900817@163.com

⁺These authors contributed equally to this work.

Table S1. Percentages of α -helix conformation for peptide vectors at a concentration of 50 μ M in TFE/PBS (50%, v/v) solution.

Figure S1. RP-HPLC of peptide vectors (P-01~P-08 and SP).

Figure S2. MALDI-TOF-MS of peptide vectors (P-01~P-08 and SP).

Figure S3. CD spectra of all peptide vectors at a concentration of 50 μ M in TFE/PBS (50%, v/v) solution.

Figure S4. Agarose gel electrophoresis assays of P-01~P-08 at various N/P ratios.

Figure S5. The particle size distributions and the TEM images of the peptide/pGL3

complexes (P-01, P-03~P-08) at the N/P ratio of 10. The scale bar represents 100 nm.

Figure S6. Zeta potentials of the peptide/pGL3 complexes at N/P ratios from 4 to 12.

Figure S7. Cell viability of (A) U87, (B) 293T-NK1R, and (C) 293T cells after being treated with peptide/pGL3 complexes at various N/P ratios. The data are shown as mean \pm SD (n = 5).

Figure S8. *In vitro* luciferase expression levels of peptide/pGL3 complexes in 293T cells at N/P ratios from 4 to 12. The data are shown as mean \pm SD (n = 3). *p < 0.05; **p < 0.01; ***p < 0.005.

Figure S9. Cell viability of (A) U87, and (B) 293T-NK1R cells after being treated with free SP and P-02/pGL3 complexes in the presence of different amount of SP at an N/P ratio of 10 in (C) U87, and (D) 293T-NK1R cells. The data are shown as mean \pm SD (n = 5).

Figure S10. The mean fluorescence intensity of U87 (left), and 293T (right) cells in FACS assays. YOYO-1 was used to label the pGL3 plasmid.

Figure S11. FACS assays of cellular uptake mechanisms of P-02/pGL3 complexes using free SP as a competitor at an N/P ratio of 10 in U87 cells. YOYO-1 was used to label the pGL3 plasmid.

Figure S12. FACS assays of cellular uptake mechanisms of P-02/pGL3 complexes using different inhibitors for endocytosis at an N/P ratio of 10 in U87 cells. YOYO-1 was used to label the pGL3 plasmid.

Table S1. Percentages of α -helix conformation for peptide vectors at a concentration of 50 μ M in TFE/PBS (50%, v/v) solution.

Compounds	Percentage of α -helix (%)
P-01	26.01
P-02	30.49
P-03	35.25
P-04	21.66
P-05	22.53
P-06	24.38
P-07	37.52
P-08	29.32

Figure S1. RP-HPLC of peptide vectors (P-01~P-08 and SP).

P-01

P-03

P-04

P-05

P-07

Figure S2. MALDI-TOF-MS of peptide vectors (P-01~P-08 and SP).

Figure S3. CD spectra of all peptide vectors at a concentration of 50 μ M in TFE/PBS (50%, v/v) solution.

Figure S4. Agarose gel electrophoresis assays of P-01~P-08 at various N/P ratios.

Figure S5. The particle size distributions and the TEM images of the peptide/pGL3 complexes (P-01, P-03~P-08) at the N/P ratio of 10. The scale bar represents 100 nm.

Figure S6. Zeta potentials of the peptide/pGL3 complexes at N/P ratios from 4 to 12.

Figure S7. Cell viability of (A) U87, (B) 293T-NK1R, and (C) 293T cells after being treated with peptide/pGL3 complexes at various N/P ratios. The data are shown as mean \pm SD (n = 5).

Figure S8. *In vitro* luciferase expression levels of peptide/pGL3 complexes in 293T cells at N/P ratios from 4 to 12. The data are shown as mean \pm SD (n = 3). *p < 0.05; **p < 0.01; ***p < 0.005.

Figure S9. Cell viability of U87 (A, C) and 293T-NK1R (B, D) cells after being treated with free SP (A, B) and P-02/pGL3 complexes in the presence of different concentration of SP at an N/P ratio of 10 (C, D). The data are shown as mean \pm SD (n = 5).

Figure S10. The mean fluorescence intensity of U87 (left) and 293T (right) cells in FACS assays. YOYO-1 was used to label the pGL3 plasmid.

Figure S11. FACS assays of cellular uptake mechanisms of P-02/pGL3 complexes using free SP as a competitor at an N/P ratio of 10 in U87 cells. YOYO-1 was used to label the pGL3 plasmid.

Figure S12. FACS assays of cellular uptake mechanisms of P-02/pGL3 complexes using different inhibitors for endocytosis at an N/P ratio of 10 in U87 cells. YOYO-1 was used to label the pGL3 plasmid.