Supporting Information

Designing aromatic N-cadherin mimetic short peptide

based bioactive scaffolds for controlling cellular

behaviour

Harsimran Kaur^a and Sangita Roy^a*.

^aInstitute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin – 140306.

*E-mail address: sangita@inst.ac.in

Table of Contents:

- 1) Table S1: LC-MS analysis data of peptides.
- Table S2. Quantitative comparison of biological studies perfomed on N-cadherin mimetic peptide hydrogel with already reported laminin based peptide hydrogles.
- **3)** Figure S1. HPLC and Mass spectra of N-cadherin mimetic peptides and control peptides.
- Figure S2. Assessment of change in viscosity of N-cadherin mimetic peptides using Thioflavin T molecular rotor assay.
- **5)** Figure S3. Fluorescence microscopic images of Thioflavin T binding to the nanostructures present in the N-cadherin mimetic peptides.
- Figure S4. AFM images of nanostructures formed in control peptide hydrogels of Fmoc-FF, Nap-FF, Fmoc-AVIDH, and Nap-AVIDH, Myristyl-HAVDI.
- Figure S5. Evaluation of biocompatibility of control peptides using MTT assay on C6 and L929 cell lines after 4 h of treatment.
- **8)** Figure S6. Evaluation of biocompatibility of N-cadherin mimetic peptides using MTT assay on C6 and L929 cell lines after 24 h of treatment.
- **9)** Figure S7. Evaluation of biocompatibility of N-cadherin mimetic peptides using MTT assay on C6 and L929 cell lines after 48 h of treatment.
- 10) Figure S8. Evaluation of biocompatibility of control peptides using MTT assay on C6 and L929 cell lines after 24 h of treatment.
- **11) Figure S9.** Evaluation of biocompatibility of control peptides using MTT assay on C6 and L929 cell lines after 48 h of treatment.

- 12) Figure S10: Evaluation and comparison of biocompatibility of Myristyl-HAVDI with Fmoc-HAVDI and Nap-HAVDI using MTT assay on C6 cell line and L929 cell line after 4 h of treatment.
- 13) Figure S11: Evaluation and comparison of biocompatibility of Myristyl-HAVDI with Fmoc-HAVDI and Nap-HAVDI using MTT assay on C6 cell line and L929 cell line after 24 h of treatment.
- 14) Figure S12: Evaluation and comparison of biocompatibility of Myristyl-HAVDI with Fmoc-HAVDI and Nap-HAVDI using MTT assay on C6 cell line and L929 cell line after 48 h of treatment.
- **15) Figure S13.** 2D cell culture study of C6 cell line on control scrambled N-cadherin peptide hydrogels.
- **16) Figure S14.** Optical images of the C6 cell line on N-cadherin mimetic peptide and control peptide hydrogels.
- 17) Figure S15. Average lengths of axons of C6 cells measured using ImageJ software by measuring 10 cells cultured on on N-cadherin mimetic peptide and control peptide hydrogels.
- 18) Figure S16. 2D cell culture study of L929 cell line on control scrambled N-cadherin peptide hydrogels.
- **19) Figure S17.** Optical images of the L929 cell line on N-cadherin mimetic peptide and control peptide hydrogels.
- 20) Figure S18. Quantification of cellular viability and proliferation of (a) rat glioma cell line, C6 and (b) mouse fibroblast cell line, L929 on N-cadherin mimetic peptide and control peptide hydrogels.

- 21) Figure S19: Quantification of cellular viability and proliferation of (a) rat glioma cell line, C6 and (b) mouse fibroblast cell line, L929 on myristyl-HAVDI peptide hydrogels using alamar blue assay at di□erent time points.
- 22) Figure S20. Quantification of cells spreading area and cell shape index of rat glioma cell line, C6 on uncoated coverslip and N-cadherin mimetic peptide Fmoc-HAVDI and Nap-HAVDI.
- 23) Figure S21. Quantification of cells spreading area and cell shape index of rat mouse fibroblast cell line, L929 on uncoated coverslip and N-cadherin mimetic peptide Fmoc-HAVDI and Nap-HAVDI.
- **24) Figure S22.** Assessment of cellular migration of C6 cells in the presence of Fmoc-HAVDI and Nap-HAVDI peptide treatment in comparison with TCP.
- **25) Figure S23.** Assessment of cellular migration of C6 cells in the presence of Fmoc-AVIDH, Nap-HAVDI, Fmoc-FF and Nap-FF peptide treatment in comparison with TCP.
- 26) Figure S24. Assessment of cellular migration of L929 cells in the presence of Fmoc-HAVDI and Nap-HAVDI peptide treatment.
- **27) Figure S25.** Assessment of cellular migration of L929 cells in the presence of Fmoc-AVIDH, Nap-HAVDI, Fmoc-FF and Nap-FF peptide treatment in comparison with TCP.

Peptide amphiphile	Calculated m/z value (M+1)	Found m/z value (M+1)
(Chemical formula)	(Chem Draw Ultra 12.0)	(ESI-MS)
HAVDI	553.31	553.54
$(C_{24}H_{40}N_8O_7)$		
Fmoc-HAVDI	775.37	775.66
$(C_{39}H_{50}N_8O_9)$		
Nap-HAVDI	734.36	734.54
$(C_{36}H_{48}N_8O_9)$		
Fmoc-AVIDH	775.37	775.62
$(C_{39}H_{50}N_8O_9)$		
Nap-AVIDH	736.36	734.66
$(C_{36}H_{48}N_8O_9)$		
Myristyl-HAVDI	762.99	763.14

Table S1. LC-MS analysis data of different peptides from Chemdraw (Ultra 12.0) and ESI-MS.

Table S2. Quantitative comparison of biological studies perfomed on N-cadherin mimetic peptide hydrogel with that of already reported laminin-based peptide hydrogles (*ACS Biomater. Sci. Eng.* 2020, **6**, 2832–2846).

 $(C_{38}H_{66}N_8O8)$

Bioactivity studies	Laminin based peptide	N-cadherin based peptide
	(Fmoc-IKVAV and Fmoc-	(Fmoc-HAVDI)
	YIGSR)	
Proliferation study	On hydrogel of peptides Fmoc-	On hydrogel of peptide
(Alamar assay) with C6	IKVAV and Fmoc -YIGSR	Fmoc-HAVDI
cell line after		
i)48 h of cell seeding	Relatively less proliferation on	No significant difference in
	hydrogel than on uncoated	cellular proliferation on
	surface.	hydrogel and on uncoated
		surface.
ii)5days of cell seeding	Similar to that of control cells	Similar to that of control
		cells
Neurite extension (after 24	\sim 74 ± 16 µm (Fmoc IKVAV)	$\sim 90 \pm 10 \ \mu m$
h)	and $\sim 87 \pm 27 \mu m$ (Fmoc-	
	YIGSR)	

Figure S1: Reverse phase HPLC and Mass spectra of N-cadherin mimetic peptides (a, b) HAVDI, (c, d) Fmoc-HAVDI, (e, f) Nap-HAVDI, (g, h) Fmoc-AVIDH, (i, j) Nap-AVIDH and (k, l) Myristyl-HAVDI.

Figure S2: Assessment of change in viscosity of N-cadherin mimetic peptides (a) Fmoc-HAVDI and (b) Nap-HAVDI upon gelation using Thioflavin T assay, which has been reported as molecular rotor.

Figure S3: Fluorescence microscopic images of Thioflavin T binding to the nanostructures present in the N-cadherin mimetic peptides (a) Fmoc-HAVDI and (b) Nap-HAVDI hydrogels. Scale bar is 50 μ m.

Figure S4: AFM images of nanostructures formed in hydrogels of (a) Fmoc-FF, (b) Nap-FF, (c) Fmoc-AVIDH, (d) Nap-AVIDH and e) Myristyl-HAVDI.

Figure S5: Evaluation of biocompatibility of N-cadherin mimetic peptides using MTT assay on (a) C6 and b) L929 cell lines. Optical images of C6 cells treated with 1000 μ g/ml of control peptides (c) Fmoc-FF, (d) Nap-FF, (e) Fmoc-AVIDH and (f) Nap-AVIDH after 4 h of incubation period. Optical images of L929 cells treated with 1000 μ g/ml of control peptides (g) Fmoc-FF, (h) Nap-FF, (i) Fmoc-AVIDH and (j) Nap-AVIDH after 4 h of incubation period. Scale bar is 100 μ m.

Figure S6: Evaluation of biocompatibility of N-cadherin mimetic peptides using MTT assay on (a) C6 and b) L929 cell lines. Optical images of C6 cells (c) control, (d) treated with 1000 μ g/ml of Fmoc-HAVDI, and (e) treated with 1000 μ g/ml of Nap-HAVDI after 24 h of incubation period. Optical images of L929 cells, (f) control, (g) treated with 1000 μ g/ml of Fmoc-HAVDI, and 1000 μ g/ml of Nap-HAVDI after 24 h of incubation period. Scale bar is 200 μ m.

Figure S7: Evaluation of biocompatibility of N-cadherin mimetic peptides using MTT assay on (a) C6 and b) L929 cell lines. Optical images of C6 cells (c) control, (d) treated with 1000 μ g/ml of Fmoc-HAVDI, and (e) treated with 1000 μ g/ml of Nap-HAVDI after 48 h of incubation period. Optical images of L929 cells, (f) control, (g) treated with 1000 μ g/ml of Fmoc-HAVDI, and 1000 μ g/ml of Nap-HAVDI after 48 h of incubation period. Scale bar is 100 μ m.

Figure S8: Evaluation of biocompatibility of control peptides using MTT assay on (a) C6 and b) L929 cell lines. Optical images of C6 cells treated with 1000 μ g/ml of control peptides (c) Fmoc-FF, (d) Nap-FF, (e) Fmoc-AVIDH and (f) Nap-AVIDH after 24 h of incubation period. Optical images of L929 cells treated with 1000 μ g/ml of control peptides (g) Fmoc-FF, (h) Nap-FF, (i) Fmoc-AVIDH and (j) Nap-AVIDH after after 24 h of incubation period. Scale bar is 100 μ m.

Figure S9: Evaluation of biocompatibility of control peptides using MTT assay on (a) C6 and b) L929 cell lines. Optical images of C6 cells treated with 1000 μ g/ml of control peptides (c) Fmoc-FF, (d) Nap-FF, (e) Fmoc-AVIDH and (f) Nap-AVIDH after 48 h of incubation period. Optical images of L929 cells treated with 1000 μ g/ml of control peptides (g) Fmoc-FF, (h) Nap-FF, (i) Fmoc-AVIDH and (j) Nap-AVIDH after after 48 h of incubation period. Scale bar is 100 μ m.

Figure S10: Evaluation and comparison of biocompatibility of Myristyl-HAVDI with Fmoc-HAVDI and Nap-HAVDI using MTT assay on (a) C6 cell line and (b) L929 cell line. Optical images of C6 cells (c) control, (d) treated with 1000 μ g/ml of Myristyl-HAVDI after 4 h of incubation period. Optical images of L929 cells, (e) control, (f) treated with 1000 μ g/ml of Myristyl-HAVDI after 4 h of incubation period. Scale bar is 200 μ m.

Figure S11: Evaluation and comparison of biocompatibility of Myristyl-HAVDI with Fmoc-HAVDI and Nap-HAVDI using MTT assay on (a) C6 cell line and (b) L929 cell line. Optical images of C6 cells (c) control, (d) treated with 1000 μ g/ml of Myristyl-HAVDI after 24 h of incubation period. Optical images of L929 cells, (e) control, (f) treated with 1000 μ g/ml of Myristyl-HAVDI after 24 h of incubation period. Scale bar is 200 μ m.

Figure S12: Evaluation and comparison of biocompatibility of Myristyl-HAVDI with Fmoc-HAVDI and Nap-HAVDI using MTT assay on (a) C6 cell line and (b) L929 cell line. Optical images of C6 cells (c) control, (d) treated with 1000 μ g/ml of Myristyl-HAVDI after 48 h of incubation period. Optical images of L929 cells, (e) control, (f) treated with 1000 μ g/ml of Myristyl-HAVDI after 48 h of incubation period. Scale bar is 200 μ m.

Figure S13: 2D cell culture study of C6 cell line on control scrambled N-cadherin peptide hydrogels. Analysis of adhesion and proliferation of rat glioma cell line, C6 on N-cadherin mimetic peptide hydrogels by Live/Dead staining. Confocal images of live and dead C6 cells labelled with DiOC18(3) and PI, respectively showing the cellular viability, adhesion, and proliferation on (a-c) control (uncoated coverslip), and (d-f) Fmoc-AVIDH hydrogel and (g-i) Nap-AVIDH hydrogel after 48 h, 72 h and 120 h, respectively. Scale bar is 100 µm.

Figure S14: Optical images of the C6 cell line on N-cadherin mimetic peptide and control peptide hydrogels. Morphological analysis of rat glioma cell line, C6 on N-cadherin mimetic peptide and control peptide hydrogels by optical imaging. Optical images of C6 cells on the (a, h) culture dish, (b, i) Fmoc-HAVDI, (c, j) Nap-HAVDI, (d, k) Fmoc-AVIDH, (e, l) Nap-AVIDH, (f, m) Fmoc-FF and (g, h) Nap-FF hydrogels after 12 h, and 24 h, respectively. Scale bar is 100 µm.

Figure S15: Average lengths of axons of C6 cells measured using ImageJ software by measuring 10 cells cultured on the control (culture dish), Fmoc-HAVDI, Nap-HAVDI, Fmoc-AVIDH, and Nap-AVIDH, hydrogels after 12 h, and 24 h.

Figure S16: 2D cell culture study of L929 cell line on control scrambled N-cadherin peptide hydrogels. Analysis of adhesion and proliferation of mouse fibroblast cells, L929 on N-cadherin mimetic peptide hydrogels by Live/Dead staining. Confocal images of live and dead L929 cells labelled with DiOC18(3) and PI, respectively showing the cellular viability, adhesion, and proliferation on (a-c) control (uncoated coverslip), and (d-f) Fmoc-AVIDH hydrogel and (g-i) Nap-AVIDH hydrogel after 48 h, 72 h, and 5 days, respectively. Scale bar is 100 μ m.

Figure S17: Optical images of the L929 cell line on N-cadherin mimetic peptide and control peptide hydrogels. Morphological analysis of mouse fibroblast cells, L929 on N-cadherin mimetic peptide and control peptide hydrogels by optical imaging. Optical images of L929 cells on the (a, h) culture dish, (b, i) Fmoc-HAVDI, (c, j) Nap-HAVDI, (d, k) Fmoc-AVIDH, (e, l) Nap-AVIDH, (f, m) Fmoc-FF and (g, h) Nap-FF hydrogels after 12 h, and 24 h, respectively. Scale bar is 100 µm.

Figure S18: Quantification of cellular viability and proliferation of (a) rat glioma cell line, C6 and (b) mouse fibroblast cell line, L929 on N-cadherin mimetic peptide Fmoc-HAVDI, Nap-HAVDI, control peptide Fmoc-FF, Nap-FF, Fmoc-AVIDH, and Nap-AVIDH peptide hydrogels using alamar blue assay at di erent time points. Data are represented as mean \pm SD. * represents P-value ≤ 0.05 , ** P-value ≤ 0.01 , and **** P-value ≤ 0.0001 and "ns" stands for nonsignificant di erence (two-way ANOVA, Bonferroni's multiple comparisons tests).

Figure S19: Quantification of cellular viability and proliferation of (a) rat glioma cell line, C6 and (b) mouse fibroblast cell line, L929 on Myristyl-HAVDI peptide hydrogels using alamar blue assay at di \Box erent time points. Data are represented as mean ± SD. * represents P-value \leq 0.05, ** P-value \leq 0.01, and **** P-value \leq 0.0001 and "ns" stands for nonsignificant di \Box erence (two-way ANOVA, Bonferroni's multiple comparisons tests).

Figure S20: Quantification of (a) cells spreading area and (b) cell shape index of rat glioma cell line, C6 on uncoated coverslip and N-cadherin mimetic peptide Fmoc-HAVDI and Nap-HAVDI. Data are represented as mean \pm SD. * represents P-value ≤ 0.05 , ** P-value ≤ 0.001 , and **** P-value ≤ 0.0001 and "ns" stands for nonsignificant di \Box erence (one-way ANOVA, Bonferroni's multiple comparisons tests).

Figure S21: Quantification of (a) cells spreading area and (b) cell shape index of rat mouse fibroblast cell line, L929 on uncoated coverslip and N-cadherin mimetic peptide Fmoc-HAVDI and Nap-HAVDI. Data are represented as mean \pm SD. * represents P-value ≤ 0.05 , ** P-value ≤ 0.01 , and **** P-value ≤ 0.0001 and "ns" stands for nonsignificant di \Box erence (one-way ANOVA, Bonferroni's multiple comparisons tests).

Figure S22: Scratch wound assay to analyse the cellular migration of C6 cells in presence of the peptide treatment. Scratch closure in (a-c) TCP, (d-f) Fmoc-HAVDI and (g-i) Nap-HAVDI at 0, 12 and 24 hours. Scale bar is 400 μ m. (j) Quantification of the wound closure with time i.e., after 12h and 14 h.

Figure S23: Scratch wound assay to analyse the cellular migration of C6 cells in presence of the peptide treatment. Scratch closure in (a-c) TCP, (d-f) Fmoc-AVIDH, (g-i) Nap-AVIDH, (j-l) Fmoc-FF and (m-o) Nap-FF at 0, 12 and 24 hours. Scale bar is 400 μ m. (p) Quantification of the wound closure with time i.e., after 12h and 14 h.

Figure S24: Scratch wound assay to analyse the cellular migration of L929 cells in presence of the peptide treatment. Scratch closure in (a-c) TCP, (d-f) Fmoc-HAVDI and (g-i) Nap-HAVDI at 0, 12 and 24 hours. Scale bar is 400 μ m. (j) Quantification of the wound closure with time i.e., after 12h and 14 h.

Figure S25: Scratch wound assay to analyse the cellular migration of L929 cells in presence of the peptide treatment. Scratch closure in (a-c) TCP, (d-f) Fmoc-AVIDH, (g-i) Nap-AVIDH, (j-l) Fmoc-FF and (m-o) Nap-FF at 0, 12 and 24 hours. Scale bar is 400 μ m. (p) Quantification of the wound closure with time i.e., after 12h and 14 h.