Spinel $Zn_3V_3O_8$ nanosheets via one - step hydrothermal synthesis with peroxidase-like activity for high-sensitive glucose colorimetric detection in synthetic perspiration

Guizeng Yang ^{a,b, c}, Yi Lu ^{a, b}, Yi Li ^a, Meihui Ying ^{a, b, c}, Haibo Pan ^{a, b, c*}, Jiayuan Qi ^{a*}, Min Du ^c

^a College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China.

^b National & Local Joint Biomedical Engineering Research Center on Phototodynamics

Technology, Fuzhou, Fujian 350108, P. R. China.

^c Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University,

Fuzhou, Fujian 350108, P. R. China

Corresponding author: Prof. Haibo Pan and Dr. Jiayuan Qi

Tel.: +86-591-83759450/22866127; fax: +86-591-22866127

E-mail: hbpan@fzu.edu.cn (H. Pan), jyqi@fzu.edu.cn (J. Qi)

Fig. S1 UV-vis absorption spectra of different reaction systems in H₂O, Zn₃V₃O₈+ H₂O₂+TMB (red line), Zn₃V₃O₈ liquid supernatant+ H₂O₂+ TMB (blue line) and VO_{4}^{3-} + H₂O₂+ TMB (black line).

Fig. S2 The fluorescence intensity of the $H_2O_2+Zn_3V_3O_8$ NSs system generated hydroxyl radicals captured by p-Phthalic acid (PTA).

Catalyst	Substrate	K_m (mM)	V _{max} (10 ⁻⁸ M s ⁻¹)	References
HRP	TMB	0.434	10	1
	H_2O_2	3.7	8.71	
VO ₂ (B)	TMB	0.146	131	2
	H_2O_2	1.69	177	
V ₆ O ₁₃	TMB	0.153	2.99	3
	H_2O_2	1.51	3.12	
Zn ₃ V ₃ O ₈ NSs	TMB	0.271	9.196	This work
	H_2O_2	1.317	1.2	

Table S1 Comparison of kinetic parameters for peroxidase-like nanomaterials and horseradish peroxidase (HRP)

Sensing probe	Linear range (µM)	Detection limit (M)	Reference
Fe SSN	10–100	$8.20 imes 10^{-6}$	4
Fe-MOF-GOx	1–500	0.487×10^{-6}	5
Pt/ cube-CeO ₂	10-100	4.10×10 ⁻⁶	6
Cu-Ag/rGO	1-30	3.82×10 ⁻⁶	7
SGO _x -NFs	Up to 100	3.5×10 ⁻⁶	8
PEG-MNPs	5 -1000	3×10 ⁻⁶	9
m-CeO ₂	20-1000	1×10 ⁻⁵	10
Zn ₃ V ₃ O ₈ NSs	10-500	2.81×10 ⁻⁷	This work

Table S2 Comparative table of colorimetric detection for glucose

Scheme S1

Reference

- 1. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, *Nature Nanotechnology*, 2007, **2**, 577-583.
- G. Nie, L. Zhang, J. Lei, L. Yang, Z. Zhang, X. Lu and C. Wang, *Journal of Materials Chemistry A*, 2014, 2, 2910-2914.
- 3. H. Li, T. Wang, Y. Wang, S. Wang, P. Su and Y. Yang, *Industrial & Engineering Chemistry Research*, 2018, **57**, 2416-2425.
- M. Chen, H. Zhou, X. Liu, T. Yuan, W. Wang, C. Zhao, Y. Zhao, F. Zhou, X. Wang, Z. Xue, T. Yao, C. Xiong and Y. Wu, *Small*, 2020, 16, e2002343.
- W. Xu, L. Jiao, H. Yan, Y. Wu, L. Chen, W. Gu, D. Du, Y. Lin and C. Zhu, ACS Applied Materials & Interfaces, 2019, 11, 22096-22101.
- Z. Li, X. Yang, Y. Yang, Y. Tan, Y. He, M. Liu, X. Liu and Q. Yuan, *Chemistry*, 2018, 24, 409-415.
- 7. G. Darabdhara, B. Sharma, M. R. Das, R. Boukherroub and S. Szunerits, *Sensors and Actuators B: Chemical*, 2017, 238, 842-851.
- 8. B. S. Batule, K. S. Park, S. Gautam, H. J. Cheon, M. I. Kim and H. G. Park, *Sensors and Actuators B: Chemical*, 2019, **283**, 749-754.
- 9. H. Y. Shin, B.-G. Kim, S. Cho, J. Lee, H. B. Na and M. I. Kim, *Microchimica Acta*, 2017, **184**, 2115-2122.
- M. S. Kim, D. H. Kim, J. Lee, H. T. Ahn, M. I. Kim and J. Lee, *Nanoscale*, 2020, 12, 1419-1424.