Supporting Information

Phosphonate/zwitterionic/cationic terpolymer as high-efficiency bactericidal and antifouling coating for metallic substrates

Xiao Zhang,1,§ Li Liu,1,§ Wan Peng,1 Xiaohan Dong,1 Yahui Gu,1 Zhuangzhuang Ma,1 Donglin Gan,1,* Pingsheng Liu 1,*

1 Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
§These authors contributed equally to this work.
*Corresponding authors. Email: 07264@njnu.edu.cn (D. G.); liups@njnu.edu.cn (P. L.)

Experimental

1
Preparation of phosphonate/zwitterionic/cationic terpolymers

By calculating the ratio of the integral area of H at position “1” in pDEMMP to the integral area of H in the benzene ring in CTA, the actual DP of pDEMMP was obtained. The peak area of H corresponding to position “5” in pDEMMP-b-p(SBMA-co-DMAEMA) was taken as reference for normalization calculation, and the ratio of the peak area of H corresponding to -CH$_3$ at position “2, 7, 12” to the peak area of H corresponding to -N(CH$_3$)$_2$ at position “15” was obtained. Combining with the degree of polymerization of pDEMMP, the actual molar ratio of SBMA to DMAEMA content was obtained.

Result and Discussion

![Fig. S1 1H NMR spectrum of pDEMMP macro–CTA.](image)
Fig. S2 1H NMR spectra of pDEMMP, pDEMMP-b-pSBMA, and pDEMMP-b-p(SBMA-co-DMAEMA).
(a) pDEMMP, (b) pDEMMP$_{15}$-b-pSBMA$_{64}$, (c) pDEMMP$_{15}$-b-p(SBMA-co-DMAEMA) (54 : 18), (d) pDEMMP$_{15}$-b-p(SBMA-co-DMAEMA) (18 : 32), and (e) pDEMMP$_{15}$-b-p(SBMA-co-DMAEMA) (9 : 52).

Fig. S3 Bactericidal properties of various block terpolymers coated surfaces. (a) Antibacterial efficiency of TC4 substrates against *S. aureus*. (b) Antibacterial efficiency of TC4 substrates against *E. coli*. Data are shown as mean ± SEM (n = 3). Statistical significance was determined by one-way ANOVA multiple comparison. Pairwise comparisons are statistically significant as denoted as *.
Fig. S4 Antifouling properties of various block terpolymers coated surfaces. (a) Antibacterial efficiency of TC4 substrates against *S. aureus* after washing with PBS. (b) Antibacterial efficiency of TC4 substrates against *E. coli* after washing with PBS. Data are shown as mean ± SEM (n = 3). Statistical significance was determined by one-way ANOVA multiple comparison. Pairwise comparisons are statistically significant as denoted as *.

Fig. S5 Antibacterial and antifouling properties of pure titanium, stainless steel and Ni/Cr alloys coated with block terpolymers. (a) Antibacterial efficiency of titanium, stainless steel and Ni/Cr alloy substrates against *S. aureus*. (b) Antibacterial efficiency of titanium, stainless steel and Ni/Cr alloy substrates against *E. coli*. Data are shown as mean ± SEM (n = 3). Statistical significance was determined by two-way ANOVA multiple comparison tests. Pairwise comparisons are statistically significant as denoted as *.