Supporting Information

Phosphonate/zwitterionic/cationic terpolymer as high-efficiency bactericidal and antifouling coating for metallic substrates

Xiao Zhang,^{1,§} Li Liu,^{1,§} Wan Peng,¹ Xiaohan Dong,¹ Yahui Gu,¹ Zhuangzhuang Ma,¹ Donglin Gan,^{1,*} Pingsheng Liu ^{1,*}

¹ Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China

§These authors contributed equally to this work.

*Corresponding authors. Email: 07264@njnu.edu.cn (D. G.); liups@njnu.edu.cn (P. L.)

Experimental

Preparation of phosphonate/zwitterionic/cationic terpolymers

By calculating the ratio of the integral area of H at position "1" in pDEMMP to the integral area of H in the benzene ring in CTA, the actual DP of pDEMMP was obtained. The peak area of H corresponding to position "5" in pDEMMP-*b*-p(SBMA-*co*-DMAEMA) was taken as reference for normalization calculation, and the ratio of the peak area of H corresponding to - CH₃ at position "2, 7, 12" to the peak area of H corresponding to -N(CH₃)₂ at position "15" was obtained. Combining with the degree of polymerization of pDEMMP, the actual molar ratio of SBMA to DMAEMA content was obtained.

Result and Discussion

Fig. S1 ¹H NMR spectrum of pDEMMP macro–CTA.

Fig. S2 ¹H NMR spectra of pDEMMP, pDEMMP-*b*-pSBMA, and pDEMMP-*b*-p(SBMA-*co*-DMAEMA). (a) pDEMMP, (b) pDEMMP₁₅-*b*-pSBMA₆₄, (c) pDEMMP₁₅-*b*-p(SBMA-*co*-DMAEMA) (54 : 18), (d) pDEMMP₁₅-*b*-p(SBMA-*co*-DMAEMA) (18 : 32), and (e) pDEMMP₁₅-*b*-p(SBMA-*co*-DMAEMA) (9 : 52).

Fig. S3 Bactericidal properties of various block terpolymers coated surfaces. (a) Antibacterial efficiency of TC4 substrates against *S. aureus*. (b) Antibacterial efficiency of TC4 substrates against *E. coli*. Data are shown as mean \pm SEM (n = 3). Statistical significance was determined by one-way ANOVA multiple comparison. Pairwise comparisons are statistically significant as denoted as *.

Fig. S4 Antifouling properties of various block terpolymers coated surfaces. (a) Antibacterial efficiency of TC4 substrates against *S. aureus* after washing with PBS. (b) Antibacterial efficiency of TC4 substrates against *E. coli* after washing with PBS. Data are shown as mean \pm SEM (n = 3). Statistical significance was determined by one-way ANOVA multiple comparison.Pairwise comparisons are statistically significant as denoted as *.

Fig. S5 Antibacterial and antifouling properties of pure titanium, stainless steel and Ni/Cr alloys coated with block terpolymers. (a) Antibacterial efficiency of titanium, stainless steel and Ni/Cr alloy substrates against *S. aureus*. (b) Antibacterial efficiency of titanium, stainless steel and Ni/Cr alloy substrates against *E. coli*. Data are shown as mean \pm SEM (n = 3). Statistical significance was determined by two-way ANOVA multiple comparison tests. Pairwise comparisons are statistically significant as denoted as *.