Electronic Supporting Information

Bioorthogonal chemistry in metal clusters: a general strategy for the construction

of multifunctional probe for bioimaging in living cells and *in vivo*

Xueqian Chen^{a,b}, Yong Zhang^{a,b}, Qing Yuan^{ab}, Mingrui Li^{a,b}, Yongning Bian^{a,b}, Dongdong Su^{a,b*}, Xueyun Gao^{a,b*}

^aDepartment of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.

^bCenter of excellence for environmental safety and biological effects, Beijing University of Technology, Beijing 100124, China.

*Corresponding authors: Email: chmsudd@bjut.edu.cn (D. Su) and gaoxy@ihep.ac.cn (X. Gao)

Contents

Fig. S1 Characterization of Cu_C@BSA-N₃.

Fig. S2 Calibration curve from Cu standards with ICP-MS.

Fig. S3 Functionalization of Cu_C@BSA-N₃ with DBCO-Cy5.

Fig. S4 UV-Vis and fluorescence spectrum of Cu_C@BSA-Cy5.

Fig. S5 Stability of FA-Cu_C@BSA-Cy5 clusters in 22 days by tracing fluorescence intensity.

Fig. S6 (A) Size distribution of FA-Cu_C@BSA-Cy5 by DLS. (B) the colloidal stability of the FA-Cu_C@BSA-Cy5 in 22 days by tracing hydrodynamic diameter.

Fig. S7 Confocal fluorescence images of cellular uptake of FA-Cu_C@BSA-Cy5 and

Cu_C@BSA-Cy5 without BSA pretreatment

Fig. S1 Characterization of $Cu_C@BSA-N_3$. (A) UV-Vis and fluorescence spectrum of BSA and the $Cu_C@BSA-N_3$ clusters. Insert presented the image of $Cu_C@BSA-N_3$ aqueous solution under visible (left) and UV irradiation (right). (B) Stability of $Cu_C@BSA-Cy5$ clusters in 22 days by tracing fluorescence intensity. (C) Size distribution of $Cu_C@BSA-N_3$ by DLS. (D) the colloidal stability of the $Cu_C@BSA-N_3$ in 30 days by tracing hydrodynamic diameter.

ICP-MS Analysis of Cu_C@BSA-N₃ Clusters' Concentration

Fig. S2 Calibration curve from Cu standards with ICP-MS (blue star: the measured value of the prepared $Cu_C @BSA-N_3$).

The ICP-MS analysis system (Thermo Elemental X7, USA) was used to determine the concentration of $Cu_C@BSA-N_3$ clusters. The resulting $Cu_C@BSA-N_3(10 \ \mu\text{L})$ was predigested with 36% HNO₃ for 6 h. The mixture was then evaporated to the last drop and diluted to 2000 times with 2% HNO₃. Simultaneously, 20 ppb of indium solution was set as the internal standard. The Cu standard curve was measured by Cu solutions of different concentrations (0.1, 0.5, 1, 5, 10, 50, 100 ng·mL⁻¹ in 2% HNO₃ solution) (**Fig. S2**). The sample concentration was obtained sequentially from the Cu standard curve, and the yield was calculated.

The Cu standard curve equation is:

As shown in **Fig. S2**, the average concentration of Cu ions in the cluster parallel samples measured by ICP-MS is 51.35 ng·mL⁻¹. Then use equation (1) to calculate the yield of Cu in $Cu_C@BSA-N_3$ cluster:

$$\gamma = \frac{2000 \times VTotal}{MCucCuVCu} = \frac{2000 \times 51.35 \times 10^{-6} \times 1.4 \times 10^{-3}}{63.55 \times 0.3 \times 10^{-3}} \times 100\% = 37.8\% (1)$$

 γ : the yield of Cu in Cu_C@BSA-N₃ cluster (%).

x: the average concentration of Cu ions in $Cu_C@BSA-N_3$ cluster by ICP-MS analysis (ng.mL⁻¹).

 V_{Total} : the total volume of prepared $Cu_C @BSA-N_3 (mL)$.

 M_{Cu} : relative atomic mass of Cu (g·mol⁻¹).

 C_{Cu} : concentration of Cu ions during synthesis (mM).

 V_{Cu} : the volume of Cu ions during synthesis (mL).

Fig. S3 Functionalization of $Cu_C@BSA-N_3$ with DBCO-Cy5. (A) Absorption calibration curve of DBCO-Cy5 (blue star: the measured value of the prepared $Cu_C@BSA-Cy5$). (B) Absorbance analysis (37°C, 60 min) for click reaction between $Cu_C@BSA-N_3$ and DBCO-Cy5. Mean value \pm SD (n = 3) was exhibited.

To determine the relative molar ratio and efficiency of N₃ groups on the surface of $Cu_C@BSA-N_3$ clusters, the reaction between $Cu_C@BSA-N_3$ and DBCO was monitored using DBCO-Cy5 by analyzing the absorbance intensity of conjugated Cu clusters at 646 nm. Due to the equivalent reaction between DBCO-Cy5 and N₃, the amount of N₃ can be estimated by the absorption of Cy5. On the other hand, since the amount of clusters is known, the average number of azide per cluster can be obtained. A standard curve between the absorbance intensity at 646 nm and the concentration of DBCO-Cy5 was first established, which shows a good linearity when the concentration of DBCO-Cy5 is 0-200 μ M (R²=0.9977, Fig. S3A). The absorption standard curve equation of DBCO-Cy5 is:

y=0.0067*x*+0.0283

Then, Cu_C@BSA-N₃ (40 mg mL⁻¹, 50 µL) was incubated with various equivalents

of **DBCO-Cy5** at 37°C for 1 h to prepare **Cu**_C@**BSA-Cy5**. **Fig. S3B** showed that when the concentration of DBCO added reaches 120 nmol ($n_{Cuc@BSA-N3}:n_{DBCO}=1:4$), the absorption intensity of **Cu**_C@**BSA-Cy5** is the highest (0.476) and is basically stable. As shown in the **Fig. S3A**, the average concentration of Cy5 in **Cu**_C@**BSA-Cy5** parallel samples analyzed by the absorption standard curve is 66.78 µM. Due to the equivalent reaction of click chemistry, the amount of **DBCO-Cy5** is equal to that of N₃. N₃ molar ratio in the azido-functionalized Cu clusters was obtained by dividing the average molar weight of Cy5 on the surface of the synthesized **Cu**_C@**BSA-Cy5** cluster against the molar weight of **Cu**_C@**BSA-N₃**. Based on the measured material is diluted to 20 times, the relative molar ratio of N₃ groups on the surface of **Cu**_C@**BSA-N₃** clusters where then calculated using equation (2):

$$n = \frac{20cCy5VTotalMBSA}{cBSAVBSA} \quad (2)$$

n: N_3 molar ratio in the azido-functionalized Cu clusters (the amount ratio of DBCO to $Cu_C@BSA-N_3$).

 c_{cy5} : the average concentration of Cy5 on the surface of the synthesized Cu_C@BSA-Cy5.

 V_{Total} : the total volume of Cu_C@BSA-Cy5 during synthesis (μ L).

 M_{BSA} : relative atomic mass of BSA (g-mol⁻¹).

 c_{BSA} : the concentration of BSA ions during synthesis BSA (mg·mL⁻¹).

 V_{BSA} : the volume of BSA ions during synthesis (μ L).

Fig. S4 UV-Vis and fluorescence spectrum of $Cu_C@BSA-Cy5 (\lambda_{em1} = 442 \text{ nm}, \lambda_{em2} = 680 \text{ nm}).$

Fig. S5 Stability of FA-Cu_C@BSA-Cy5 clusters in 22 days by tracing fluorescence intensity.

Fig. S6 (A) Size distribution of **FA-Cu_C@BSA-Cy5** by DLS. (B) the colloidal stability of the **FA-Cu_C@BSA-Cy5** in 22 days by tracing hydrodynamic diameter.

Fig. S7 Confocal fluorescence images of cellular uptake of FA-Cu_C@BSA-Cy5 and Cu_C@BSA-Cy5 without BSA pretreatment (A) KB cells cultured with FA-Cu_C@BSA-Cy5. (B) KB cells cultured with Cu_C@BSA-Cy5. (C) A549 cells cultured with FA-Cu_C@BSA-Cy5. (D) A549 cells cultured with Cu_C@BSA-Cy5. Cellular nuclei were stained with DAPI (0.5 μ g·mL⁻¹ $\lambda_{ex} = 404$ nm, $\lambda_{em} = 425$ -475 nm), clusters (20 μ M, $\lambda_{ex} = 640$ nm, $\lambda_{em} = 663$ -738 nm). Scale bar: 25 μ m