Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Skin Protein-Derived Peptides-Conjugated Vesicular Nanocargos for Selected Skin Cell Targeting and Consequent Activation

Jung Hyeon Cho,^a Jeong Yi Kang,^a Seulgi Kim,^a Hwi Ra Baek,^a Junoh Kim,^b Kwang-Suk Jang,^c and Jin Woong Kim^{*a}

^a School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

^b Technology Innovation Center, Shinsegae International, Seoul 06015, Republic of Korea

^c Department of Applied Chemistry and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea

Experimental data

Table S1. Molar concentration of DPPC, PEO-PCL-PEO, MEL-maleimide, and CTPs used for fabrication of nanovesicles.

Sample	DPPC (μM)	PEO-PCL-PEO (μM)	MEL-maleimide (μM)	СТР (µM)
LNV	6810	0	826	0
PLNV	6129	25	826	0
PLNV _{CTP-25µM}	6129	25	826	25
PLNV _{CTP-50µM}	6129	25	826	50
PLNV _{CTP-100µM}	6129	25	826	100

Figure S1. Release behaviors of (a) niacinamide, (b) α -bisabolol, (c) α -tocopherol from PNLVs determined with Frantz diffusion cells at 25°C.

Figure S2. Molecular structure of (a) DPPC and (b) PEO-b-PCL-b-PEO. TEM images of (c) LNV, (d) LNV with MEL-maleimide, (e) PLNVs, and (f) PLNVs co-assembled with MEL-maleimide.

Figure S3. Chemical structure and analysis of ¹H NMR spectra of (a) MEL linker and (b) KTTKS conjugated MEL linker. The NMR solvent system was conditioned with the mixture of DMSO and D_2O with a ratio of 5:3 (v/v).

Figure S4. Particle size changes of LNVs and PLNVs after incubation with FBS for 5 days. (b) Fluorescence spectra of Texas red DHPE-loaded PLNVs measured at $\lambda_{582} \sim \lambda_{601}$ after incubation with FBS/PBS (1/9, v/v) for different time.

Figure S5. Long-term storage stability of PLNVs for 8 weeks in different temperatures: (a,b) LVs and (c,d) PLNVs fabricated with DPPC/PEO-b-PCL-b-PEO=9.5:0.5 (w/w).

Figure S6. Quantitative cellular uptake analysis of PLNVs with varying ratio of DPPC and PEOb-PCL-b-PEO for different time: CCD-986sk (a), SK-MEL-28 (b), and HaCaT (c) cells.

Figure S7. Encapsulation efficiency of (a) niacinamide, (b) α -bisabolol, (c) α -tocopherol in PLNVs.

Figure S8. Microscopic image of 3 different types of cell mixture after treatment with neat PLNVs (no conjugation of CTPs). (a) Bright-field microscopic image. (b) Fluorescence microscopic image. Cells were visualized by labelling with DAPI (blue) and Texas red-DHPE (red). The fluorescence images were obtained wavelength at $\lambda_{364} \sim \lambda_{454}$ for DAPI and $\lambda_{582} \sim \lambda_{601}$ for Texas red.