Supporting Information

"All-in-One" Strategy Based on Organic Molecule DCN-4CQA for Effective NIR Fluorescence Imaging guided Dual Phototherapy

Lu Li, a Yanjie Liu, a Tiedong Sun, a Tianlei Zhou, b Yinshuai Bai, d Xiangzhen Liu, d Shiying Zhang, d Tao Jia,* a Xiuhua Zhao* a and Yue Wang c

a Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, P. R. China

b Kaneka US Material Research Center (KMR) Kaneka Americas Holding, Inc. 34801 Campus Dr., Fremont, CA, 94555 (USA)

c State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun 130012, P. R. China

d Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan, 450000, P.R. China

*Email: jiataopolychem@nefu.edu.cn, xiuhuazhao@nefu.edu.cn.
Scheme 1. The synthesis route of DCN-4CQA

Fig. S1 1H NMR spectrum of DCN-4CQA in CDCl$_3$.
Fig. S2 Calculation of molar absorption coefficient.
Fig. S3 Thermal imaging of PBS under 655 nm laser irradiation (1.0 W/cm2) for different times.

Fig. S4 Linear time data versus $-\ln(\theta)$ obtained from the cooling period of NIR laser off.
Fig. S5 (A, B) UV-vis absorption spectra of DPBF with and without DCN-4CQA under 655 nm irradiation at 1.0 W/cm² for different time. (C) Absorption at 419 nm of DPBF with and without DCN-4CQA under 730 nm laser irradiation. (D) Illustration of the reaction from DPBF to DPBF endoperoxide by singlet oxygen.
Fig. S6 1O$_2$ emission at \sim1270 nm induced by the commercial MB and DCN-4CQA in ethanol under excitation with a 655 nm light.

Fig. S7 Thermal imaging of mice without any treatments under 730 nm laser irradiation for different times.
Fig. S8 Tumor images of different groups of 4T1 tumor-bearing mice after 14-day treatment.