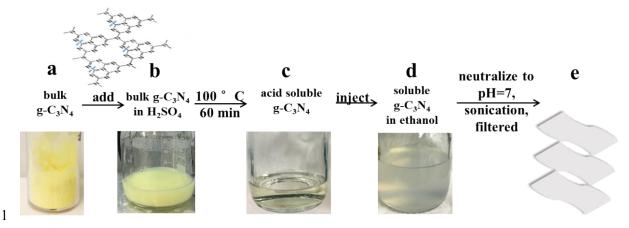
1 Supporting Information

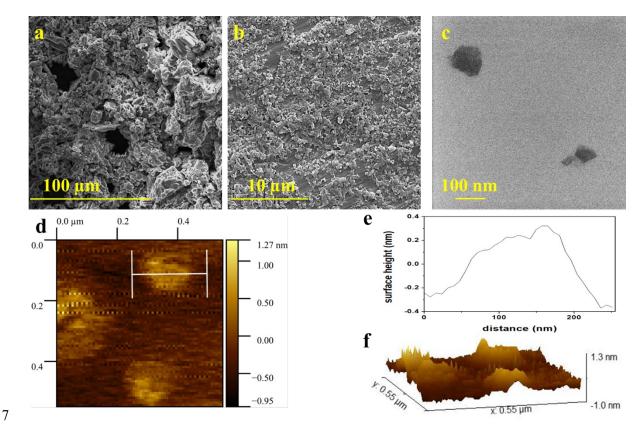
2 Polyethyleneimine-modified graphitic carbon nitride nanosheets: a label-free Raman 3 traceable siBNA delivery system

- 3 traceable siRNA delivery system
- 4

5 Lei Liu^{a,b,c}, Xin Du^{d,*}


6 a Chemical Pharmaceutical Research Center, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, P.R. China.

7 ^b Jiangsu Tasly Diyi Pharmaceutical Co.,Ltd.,Huaian 223003, P.R. China.

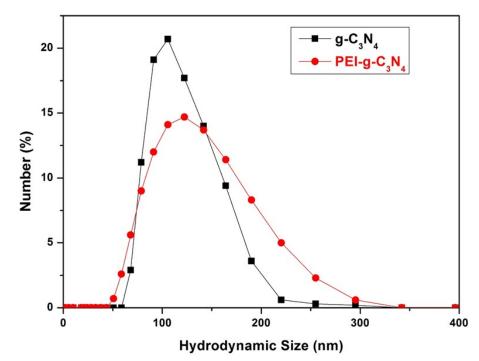

8 School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.

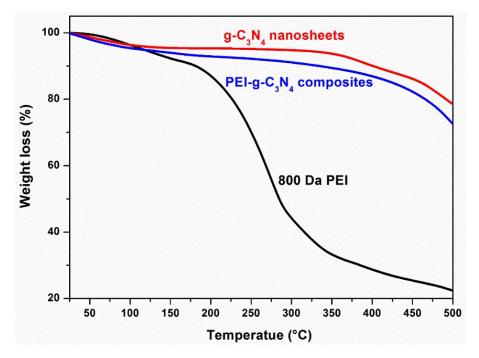
- 9 ^d Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of
- 10 Science & Technology Beijing, Beijing 100083, P. R. China.

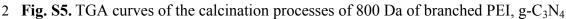
11

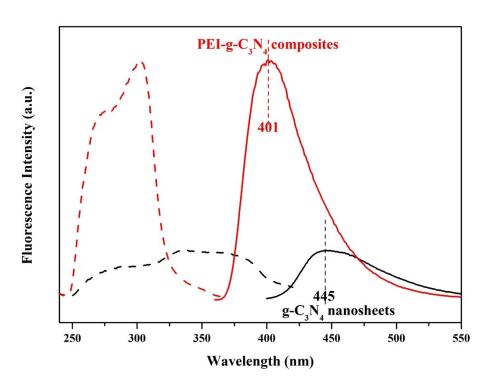
Fig. S1 Synthesis process of acidified layered $g-C_3N_4$ nanosheets and photographs of (a) bulk g-C₃N₄ powder, (b) g-C₃N₄ powder in H₂SO₄ before reaction, (c) acidified g-C₃N₄ nanosheets soluble in H₂SO₄ after reaction, (d) the suspension of acid-soluble g-C₃N₄ nanosheets in ethanol and (e) layered g-C₃N₄ nanosheets.

8 Fig. S2. SEM images of a) bulk $g-C_3N_4$ powder, b) layered $g-C_3N_4$ nanosheets and c) the 9 TEM image of layered $g-C_3N_4$ nanosheets, (d) the AFM image of $g-C_3N_4$ nanosheets with a 10 randomly selected line, (e) the surface height curve of the selected line from the AFM of g-11 C_3N_4 nanosheets, (f) the 3D pattern of $g-C_3N_4$ nanosheets.





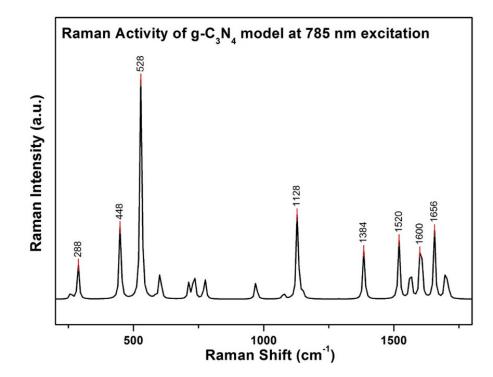

Fig. S3. Hydrodynamic size distributions of g-C₃N₄ nanosheets and PEI-g-C₃N₄ composites
in water at pH 7.

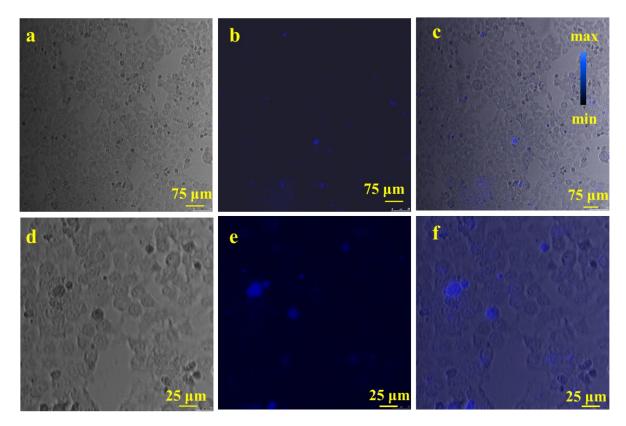


7 Fig. S4. FT-IR spectra of bulk $g-C_3N_4$ powder, $g-C_3N_4$ nanosheets and PEI- $g-C_3N_4$ composites.

3 nanosheets and PEI-g-C₃N₄ nanocomposites.

6 Fig. S6. Fluorescence excitation and emission spectra of g-C₃N₄ nanosheets and PEI-g-C₃N₄
7 composites.




Fig. S7. The calculated Raman activity of g-C₃N₄ model under 785 nm excitation laser and
the vibration animations of g-C₃N₄ model at 448 and 528 cm⁻¹ Raman shift is in the followed
mp4 videos S1 and S2 at https://doi. org/XXXXXXX

Weight ratio of materials: DNA 10:1 20:1 50:1 100:1 200:1

1

- 2 Fig. S8. Agarose gel electrophoresis indicating the model DNA binding capabilities of g-
- 3 C_3N_4 nanosheets at different materials to DNA weight ratios from 10 to 200.

2 Fig. S9. Fluorescence images of PEI-g-C₃N₄@siRNA composites with low magnitude (a-c)
3 and high magnitude (d-f), (a,d) optical images, (b,e) fluorescence images and (c,f) merged
4 images.

2 Table S1. Hydrodynamic sizes and zeta potential of g-C₃N₄ nanosheets and PEI-g-C₃N₄
3 composites measured at pH 7.

Sample name	PDI	Hydrodynamic size [nm]	Zeta potential [mV] ⁾
g-C ₃ N ₄	0.25	118.4 ± 0.9	-32.2 ± 1.5
PEI-g-C ₃ N ₄	0.46	122.1 ± 0.5	42.5 ± 0.1