Supporting Information

Tunable, conductive, self-healing, adhesive and injectable hydrogel for bioelectronics and tissue regeneration applications

Vineeta Panwar1, Anand Babu2, Anjana Sharma1, Jijo Thomas1, Vianni Chopra1, Pinki Malik2, Swati Rajput3, Monika Mittal3, Rajdeep Guha4, Naibedya Chattopadhyay3, Dipankar Mandal2 and Deepa Ghosh1*

1Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali-140306, Punjab, India.

2Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Sector-81, Mohali-140306, Punjab, India.

3Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, U.P., India.

4Laboratory Animal Facility, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, U.P., India.

*Correspondence: Dr. Deepa Ghosh (deepa.ghosh@inst.ac.in, Tel.: 0172-221075)
Table of Contents

Figure S1. Scheme for the synthesis of carboxymethyl chitosan 3
Figure S2. FTIR Spectra of chitosan and carboxymethyl chitosan 3
Figure S3. FTIR Spectra of CMC, CMC-D and CMC-D-PDA 4
Figure S4. FTIR Spectra of CMC-D-PDA, CMCh and Ch-CMC-PDA 4
Figure S5. Scheme for the synthesis of Ch-CMC-PDA 5
Figure S6. The recovery of hydrogel after high shear load 6
Figure S7. I-V curves of hydrogels swollen in PBS and deionized H₂O 6
Figure S8. Schematic representation for conductivity 7
Figure S9. Scheme of device fabrication for TENG 7
Figure S10. Cytocompatibility studies ... 8
Figure S11. MTT Assay ... 8
Table S1. Conductivity Comparison with the reported hydrogels 9
References .. 9
Figure S1. Scheme for the synthesis of carboxymethyl chitosan.

Figure S2. FTIR Spectra of chitosan and carboxymethyl chitosan
Figure S3. FTIR Spectra of CMC, CMC-D and CMC-D-PDA

Figure S4. FTIR Spectra of CMC-D-PDA, CMCh and Ch-CMC-PDA
Figure S5. Scheme for the synthesis of Ch-CMC-PDA
Figure S6. The recovery of hydrogel after high shear load demonstrated by the continuous step strain. A) Ch-CMC-PDA$_1$, B) Ch-CMC-PDA$_2$, C) Ch-CMC-PDA$_3$

Figure S7. Current-Voltage characteristics of Ch-CMC and Ch-CMC-PDA$_2$ hydrogel swollen in PBS and deionized H$_2$O.
Figure S8. Schematic representation for electrical measurement

Figure S9. Scheme of device fabrication for TENG (a) Control and (b) Ch-CMC-PDA$_x$
Figure S10. Cytocompatibility studies. Bright field images of L929 cells treated with contact media and incubated for 72 h. (A) Untreated control, (B) Ch-CMC-PDA$_1$, (C) Ch-CMC-PDA$_2$ (D) Ch-CMC-PDA$_3$ respectively.

Figure S11. Cell viability on exposure of L929 cells with hydrogel-contact media using MTT assay. Data represents mean ± SD from 3 experiments carried out in triplicate. ns indicates no significant change (One-way ANOVA, Tukey's multiple comparison test).
Table S1. Conductivity comparison with the reported hydrogels

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Material</th>
<th>Application</th>
<th>Conductivity</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PEDOT: PSS/peptide–PEG hydrogels</td>
<td>Tissue engineering</td>
<td>8-16×10⁻³ S/cm</td>
<td>[1]</td>
</tr>
<tr>
<td>2.</td>
<td>GOxSPNB Hydrogels.</td>
<td>Adhesive</td>
<td>1.05×10⁻² S/cm</td>
<td>[2]</td>
</tr>
<tr>
<td>3.</td>
<td>PNIPAM/L/CNT</td>
<td>Human monitoring motion</td>
<td>1.3-1.9×10⁻² S/cm</td>
<td>[3]</td>
</tr>
<tr>
<td>5.</td>
<td>Chitosan/graphene oxide composite hydrogel</td>
<td>Tissue engineering</td>
<td>0.57-1.22×10⁻³ S/cm</td>
<td>[5]</td>
</tr>
<tr>
<td>7.</td>
<td>CS-AT Hydrogel</td>
<td>Cell Delivery Carrier for Cardiac Cell Therapy</td>
<td>2.2-2.4×10⁻³ S/cm</td>
<td>[7]</td>
</tr>
<tr>
<td>8.</td>
<td>QCSP/PEGS-FA hydrogel</td>
<td>Wound dressing and cutaneous wound healing</td>
<td>2.25–3.5×10⁻³ S/cm</td>
<td>[8]</td>
</tr>
<tr>
<td>9.</td>
<td>Ch-CMC-PDAx hydrogel</td>
<td>Multi-functional hydrogel</td>
<td>0.01-3.4×10⁻³ S/cm</td>
<td>Our Hydrogel</td>
</tr>
</tbody>
</table>

References