Facile Synthesis of Biocompatible Magnetic Titania Nanorods for T\textsubscript{1}-Magnetic Resonance Imaging and Enhanced Phototherapy of Cancers

M. Zubair Iqbala,b,h, Dandan Luoa,i, Ozioma U. Akakurub, Asim Mushtaqa, Yike Houa, Israt Alic, Gohar Ijazb, Bilal Khalidd, Xiangdong Konga,*, Aiguo Wub,*

aInstitute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
bCixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China
cInstitute of Physics, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava, Slovakia
dState Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Corresponding Authors email: kongxd@zstu.edu.cn, aiguo@nimte.ac.cn

Figure S1. Plot of transverse relaxation rates of prepared NCs against different Fe concentrations.
Figure S2. Surface charge measurement of NCs@Cyclohexane, FBS, aqueous dispersed NCs and after exposure to 80% serum in the incubation solution.

Figure S3. Precipitant and supernate of NCs after incubated in 80% FBS and 80%FBS