Facile Synthesis of Biocompatible Magnetic Titania Nanorods for T_1 -Magnetic Resonance Imaging and Enhanced Phototherapy of Cancers

M. Zubair Iqbal^{a,b#}, Dandan Luo^{a#}, Ozioma U. Akakuru^b, Asim Mushtaq^a, Yike Hou^a, Israt Ali^c,

Gohar Ijaz^b, Bilal Khalid^d, Xiangdong Kong^a*, Aiguo Wu^b*

^aInstitute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.

^bCixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 ZhongGuan West Road, Ningbo, 315201, China

^cInstitute of Physics, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava, Slovakia

^dState Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Corresponding Authors email: kongxd@zstu.edu.cn, aiguo@nimte.ac.cn

Figure S1. Plot of transverse relaxation rates of prepared NCs against different Fe concentrations.

Figure S2. Surface charge measurement of NCs@Cyclohexane, FBS, aqueous dispersed NCs and after exposure to 80% serum in the incubation solution.

Figure S3. Precipitant and supernate of NCs after incubated in 80% FBS and 80%FBS