Supporting Information

Tuning the physicochemical properties of reticular covalent organic frameworks (COFs) for biomedical applications

Chunyang Liao* and Sijin Liu*

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-

Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Corresponding authors: cyliao@rcees.ac.cn; sjliu@rcees.ac.cn

Table S1.	. The synthetic	strategies of COFs.
		~

Synthetic method	Procedure	Advantage	Limitation	Ref.
Bottom-up strategy				
Solvothermal method	Disperse monomers in solvents. Seal the vessel and react under a certain temperature (80-120 °C) for several days.	The most commonly used synthetic method for COFs; simple and straightforward.	Request strict synthetic condition and long reaction time; need a large amount of organic solvent, which may cause environmental pollution; produce COF product as powder, which is hard for incorporating into devices.	[1,2]
Ionothermal method	Use ionic liquid (e.g. ZnCl ₂) as solvent, which is a relatively complex solvothermal strategy.	Mild and green; able to obtain crystalline structure.	Difficult to control crystallinity; require high reaction temperature thus narrow the scope of building units.	[3,4]
Microwave-assisted synthesis	Dissolve monomers in solvent and sealed with nitrogen. Heat the system by microwave irradiation and kept at certain temperature for several minutes.	Fast and clean, providing new possibility for further applications in large scale.	Obtain COFs as powder.	[5,6]
Mechanochemical method	Place the monomers in a mortar and ground by using a pestle at room temperature; catalyst solution is needed in some cases added to enhance the reaction rate and improve crystallinity.	Easy to operate; eco-friendly and timesaving, which is promising to produce COFs in large-scale.	The suitable monomers and reaction are limited.	[7,8]
Interfacial synthesis	A widely used approach for the fabrication of thin films. Solid-vapor interface synthesis: under ultrahigh vacuum, halogenate monomers will be turned into vapor at first and	Efficient method for fabricating COF thin films with simultaneous control of their thickness.	The production capacity is rather low.	[9,10]

	deposited on the surface of clean metal surface; Liquid-liquid interface synthesis: dissolve monomers and catalysts in two immiscible solvents. Monomers are polymerized and transformed into thin film at the interface.			
Top-down strategy				
Solvent-assisted	Weaken the π - π interaction between the	The most used method for COF	The crystallinity of COF may	[11,12]
exfoliation	COF layers with the help of a suitable	exfoliation; enable the high-yield and	decrease; monolayered nanosheet is	
	solvent (CH ₂ Cl ₂ , CHCl ₃ , MeOH, and	large-scale production of ultrathin	difficult to obtain; the aggregation	
	Tetrahydrofuran, etc.)	nanosheets in solution at low cost.	of monolayers exists due to the	
Mechanical	Break the strong $\pi - \pi$ interactions between	Effective and solvent-free	stacking interaction; the yield of	[13,14]
delamination	the COF layers through mechanical		COF thin film is relatively low.	
	grinding.			
Chemical exfoliation	Intercalate groups into the COF backbone	Improved aqueous dispersibility;		[15,16]
	through chemical reaction. Weaken the	easier to control the thickness of		
	planarity of each layer and the π - π stacking	COFs; able to introduce functional		
	between layers.	groups.		
Self-exfoliation method	Choose well-designed building blocks to	Simple; avoid restacking; the ionic]	[17,18]
	induce peeling-off by an internal force.	building units can not only initiate		
	Introduce certain groups to enlarge the	the self-exfoliation process but also		
	distance between neighboring layers and	introduce targeted functional groups.		
	reduce the π - π interaction.			

Reference:

- [1] X. Feng, X. Ding, D. L. Jiang, Chem. Soc. Rev. 2012, 41, 6010-6022.
- [2] L. J. Zhu, Y. B. Zhang, *Molecules* 2017, 22, 1149.
- [3] P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 2008, 47, 3450-3453.
- [4] X. Y. Guan, Y. C. Ma, H. Li, Y. Yusran, M. Xue, Q. R. Fang, Y. S. Yan, V. Valtchev, S. L. Qiu, J. Am. Chem. Soc. 2018, 140, 4494–4498.
- [5] J. L. Ge, J. D. Xiao, L. L. Liu, L. G. Qiu, X. Jiang, F J. Porous Mater. 2016, 23, 791-800.
- [6] D. D. Hao, J. N. Zhang, H. Lu, W. G. Leng, R. Ge, X. D. Dai, Y. N. Gao, Chem. Commun. 2014, 50, 1462–1464.
- [7] S. Chandra, S. Kandambeth, B. P. Biswal, B. Lukose, S. M. Kunjir, M. Chaudhary, R. Babarao, T. Heine, R. Banerjee, J. Am. Chem. Soc. 2013, 135, 17853–17861.
- [8] S. Karak, S. Kandambeth, B. P. Biswal, H. S. Sasmal, S. Kumar, P. Pachfule, R. Banerjee, J. Am. Chem. Soc. 2017, 139, 1856–1862.
- [9] A. C. Marele, R. Mas-Balleste, L. Terracciano, J. Rodriguez-Fernandez, I. Berlanga, S. S. Alexandre, R. Otero, J. M. Gallego, F. Zamora, J. M. Gomez-Rodriguez, *Chem. Commun.* 2012, 48, 6779–6781.
- [10] K. Dey, M. Pal, K. C. Rout, H. S. Kunjattu, A. Das, R. Mukherjee, U. K. Kharul, R. Banerjee, J. Am. Chem. Soc. 2017, 139, 13083–13091.
- [11] Y. W. Peng, Y. Huang, Y. H. Zhu, B. Chen, L. Y. Wang, Z. C. Lai, Z. C. Zhang, M. T. Zhao, C. L. Tan, N. L. Yang, F. W. Shao, Y. Han, H. Zhang, J. Am. Chem. Soc. 2017, 139, 8698–8704.
- [12] G. Li, K. Zhang, T. Tsuru, ACS Appl. Mater. Interfaces 2017, 9, 8433-8436.
- [13] S. Wang, Q. Y. Wang, P. P. Shao, Y. Z. Han, X. Gao, L. Ma, S. Yuan, X. J. Ma, J. W. Zhou, X. Feng, B. Wang, J. Am. Chem. Soc. 2017, 139, 4258–4261.
- [14] X. W. Mu, J. Zhan, X. M. Feng, B. H. Yuan, S. L. Qiu, L. Song, Y. Hu, ACS Appl. Mater. Interfaces 2017, 9, 23017–23026.
- [15] M. A. Khayum, S. Kandambeth, S. Mitra, S. B. Nair, A. Das, S. S. Nagane, R. Mukherjee, R. Banerjee, Angew. Chem. Int. Ed. 2016, 55, 15604–15608; Angew. Chem. 2016, 128, 15833–15837.
- [16] L. Ji, G. N. Guo, H. Y. Sheng, S. L. Qin, B. W. Wang, D. D. Han, T. T. Li, D. Yang, A. G. Dong, *Chem. Mater.* 2016, 28, 3823–3830.
- [17] Z. Kahveci, T. Islamoglu, G. A. Shar, R. Ding, H. M. El-Kaderi, *CrystEngComm* 2013, 15, 1524– 1527.
- [18] S. Mitra, S. Kandambeth, B. P. Biswal, M. A. Khayum, C. K. Choudhury, M. Mehta, G. Kaur, S. Banerjee, A. Prabhune, S. Verma, S. Roy, U. K. Kharu, R. Banerjee, J. Am. Chem. Soc. 2016, 138, 2823–2828.