Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

Membrane protein channels equipped with a cleavable linker for inducing catalysis inside nanocompartments

Luisa Zartner^a, Viviana Maffeis^{a,b}, Cora-Ann Schoenenberger^{a,b}, Ionel Adrian Dinu^{a,b}, Cornelia

G. Palivan^{a,b}*

^aDepartment of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, 4058 Basel, Switzerland

^bNCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland

Figure S1. ¹H-NMR spectrum of Compound 2 in CDCl₃ at 500 MHz.

Figure S2. ¹³C-NMR spectrum of Compound 2 in CDCl₃ at 126 MHz.

Figure S3. ¹H-NMR spectrum of the bismaleimide linker in CDCl₃ at 500 MHz.

Figure S4. ¹³C-NMR spectrum of the bismaleimide linker in CDCl₃ at 126 MHz and the image of the corresponding dissolved linker in the NMR tube.

Figure S5. SDS PAGE of OmpF-M (*left,* fluorogram; *right,* Coomassie-stained): L: Protein ladder; 1, 2: unlabeled OmpF-M, at 1/1 (1) and 2/1 (2) ratio (v/v) with loading buffer; 3, 4: OmpF-M labelled with the linker comprising fluorescent cyanine3 ($\lambda_{ex} = 550 \text{ nm} / \lambda_{em} = 580 \text{ nm}$). M_W of OmpF around 40 kDa.

Table S1. Fluorescence correlation parameters of the free fluorophore cyanine3 maleimide, free linker, CNCs with OmpF-M-linker inserted in the membrane, stand-alone OmpF-M-linker, and OmpF-M-linker added to empty polymersomes before and after staining the polymersomes with BODIPY 630/650-X.

	Counts per molecule (kHz)	Diffusion time (µs)
Cyanine3 maleimide	1.7	61
Linker	2.3	70
OmpF-M-Linker CNCs	28.3	4530
Linker-OmpF-M	3.1	452
CNCs AND linker- OmpF-M without BODIPY	7.0	452
CNCs AND linker-OmpF-M with BODIPY	138.3	6000

Figure S6. ¹H-NMR spectrum of poly(2-methyl-2-oxazoline)-*b*-poly(dimethylsiloxane)-*b*-poly(2-methyl-2-oxazoline) triblock copolymer (PMOXA₁₁-*b*-PDMS₁₀₄-*b*-PMOXA₁₁) in CDCl₃ at 500 MHz.

Figure S7. Elugram (GPC) of PMOXA11-b-PDMS104-b-PMOXA11 in DMF.

Table S2. Data from NTA measurements of CNC-noOmpF, CNC-linker-OmpF-M, CNC-OmpF-

	CNC-noOmpF	CNC-linker-OmpF-M	CNC-OmpF-M	CNC-OmpF-WT
diameter (nm)	202 ± 47	192 ± 42	182 ± 42	215 ± 49
concentration (particles/mL)	$\begin{array}{c} 2.6\times10^8\pm\\ 1.6\times10^7 \end{array}$	$1.8 \times 10^8 \pm 4.5 \times 10^6$	$3.1 \times 10^8 \pm 1.7 \times 10^7$	$\begin{array}{c} 3.8\times10^8\pm\\ 2.4\times10^7 \end{array}$

M), and CNC-OmpF-WT samples diluted 1:1000 in PBS.

Figure S8. Laccase activity of CNCs in response to NaIO₄. Measurements were carried out in triplicate at pH 7.4, over 9 h at RT: ABTS in PBS with CNC-OmpF-WT (black), ABTS in PBS with CNC-OmpF-M (red), ABTS in PBS with CNC-linker-OmpF-M in the presence (green) and absence of NaIO₄ (blue), CNC-noOmpF without (purple) and with NaIO₄ (yellow), and ATBS in PBS (turquoise). (A-C) represent 3 independent CNC preparations (each with standard deviation).

Figure S9. Cryo-TEM micrographs of polymersomes self-assembled from PMOXA₁₁-*b*-PDMS₁₀₄*b*-PMOXA₁₁. Scale bars: 100 nm

Figure S10. FCS autocorrelation curves (solid line) and raw data (dots) of PBS solutions of cyanine3 maleimide (pink), OmpF-M-linker in 1% OG added to empty polymersomes without BODIPY 630/650-X (blue) and stained with BODIPY 630/650-X (red).

Figure S11. SDS PAGE of fungal laccase from *Agaricus bisporus*: L: Protein ladder; Lac1: 10 µg laccase; Lac2: 5 µg laccase.

Figure S12. Calibration curve for BCA assay performed according to the supplier's protocol (Thermo Fisher Scientific, U.S.A.)