ELECTRONIC SUPPLEMENTARY INFORMATION

Mn(II)-Conjugated Silica Nanoparticles as Potential MRI Probes

Daniela Lalli^a, Giuseppe Ferrauto^b, Enzo Terreno^{b*}, Fabio Carniato^a, Mauro Botta^{a*} ^aMagnetic Resonance Platform (PRISMA-UPO), Department of Sciences and Technological Innovation, University of Eastern Piedmont "Amedeo Avogadro", Viale Teresa Michel 11, 15121-Alessandria, Italy

^bMolecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino- Via Nizza 52, 10126 Torino, Italy.

*E-mail: <u>mauro.botta@uniupo.it; enzo.terreno@unito.it</u>

Scheme S1. Synthetic procedure for the preparation of CDTA-bisamide.

Figure S1. pH dependence of r_1 at 62 MHz and 298 K for an aqueous solution of the MnL complex.

Figure S2. ¹⁷O NMR chemical shift variation as a function of temperature measured for a 5.5 mM solution of MnL at 500 MHz (11.74 T).

Figure S3. ¹H NMRD profiles of a 0.25 mM suspension of MnL-SiNPs, measured at different temperatures (283 (blue), 298 (black) and 310 K (red)).

Figure S4. R_1 values at 32 MHz and 298 K of suspensions of MnL-SiNPs in the absence (1) and in the presence of 0.1 (2) and 0.2 % (3) of xanthan gum.

Figure S5. Temperature dependence of r_1 measured at 10 MHz and 298 K for an aqueous solution of the MnL-SiNPs ([Mn²⁺] = 0.25 mM).

Figure S6. Comparison of the R_1 values as a function of the magnetic field strength (1-120 MHz) of the MnL-SiNPs with (\bullet) and without (\diamond) the presence of Seronorm, measured at 298 K.

Fig. S7. Observed longitudinal relaxation rate of MnL-SiNPs in Seronorm matrix overt the time (32 MHz and 298 K).

Figure S8. Coronal representative T_{2w} and T_{1w} MRI of a mouse before and after (t = 20 min) intravenous administration of MnL-NPs (B₀ = 7 T). White arrows indicate the mouse's liver.

	Mn-t-CDTA[1]	MnL
	(MW = 415.3 g/mol)	(MW = 639.6 g/mol)
r_{1}^{20} / mM ⁻¹ s ⁻¹	3.6	5.3
Δ^2 (s ⁻²)	-	5.3·10 ¹⁹
$ au_{ m v}^{298}({ m ps})$	-	33.8
$E_v (k \mathrm{J} \mathrm{mol}^{-1})$	-	1.00
$ au_{ m M}^{ m 298}$ (ns)	7.1	20
${}^{\ddagger}_{M}(k \mathrm{J} \ \mathrm{mol}^{-1})$	42.5	38.8
A ₀ /ħ (10 ⁶ rad s ⁻¹)	26.4	27
$ au_{ m R}^{298}$ (ps)	74	126
$E_{\rm r}$ (kJ mol ⁻¹)	-	26.3
$D_{\rm M-H}^{298} (10^{-9}~{ m m}^2~{ m s}^{-1})$	-	2.2
<i>r_{м-н}</i> (Å)	2.83	2.83
а _{м-н} (Å)	3.6	3.6
q	1	1

Table S1. Parameters obtained from the simultaneous fitting of NMRD profiles and ¹⁷O NMR data for MnL in comparison with that reported in literature for Mn-*t*-CDTA.

_

_

1. Molnar, E.; Varadi, B.; Garda, Z.; Botar, R.; Kalman, F. K.; Toth, E.; Platas-Iglesias, C.; Toth, I.; Brucher, E.; Tircso, G., Remarkable differences and similarities between the isomeric Mn(II)-cis- and trans-1,2-diaminocyclohexane-N,N,N ',N '-tetraacetate complexes. Inorg. Chim. Acta 2018, 472, 254-263.

Appendix S1: Mathematical calculation of detection threshold.

The T_1 enhancement in the MR image is given by the following equation:

$$T_1 enh \% = \frac{SI_{post} - SI_{pre}}{SI_{pre}} \times 100$$

-

where SI is the signal intensity in the image acquired *pre* or *post* administration of the contrast probe. The signal intensity in T_{1w} image is given by the following equation:

$$SI = A \frac{\left(1 - e^{-\frac{TR}{T_1}}\right) \sin \alpha}{1 - \cos(\alpha) e^{-\frac{TR}{T_1}}}$$

By combining the previous two equations, the T_1 enh% is given by:

$$T_{1}enh\% = \frac{SI_{post} - SI_{pre}}{SI_{pre}} = \frac{A \frac{\left(1 - e^{-\frac{TR}{T_{post}}}\right) \sin \alpha}{1 - \cos (\alpha) e^{-\frac{TR}{T_{post}}}} - A \frac{\left(1 - e^{-\frac{TR}{T_{pre}}}\right) \sin \alpha}{1 - \cos (\alpha) e^{-\frac{TR}{T_{pre}}}} - 100$$

$$A \frac{\left(1 - e^{-\frac{TR}{T_{post}}}\right) \sin \alpha}{A \frac{\left(1 - e^{-\frac{TR}{T_{post}}}\right) \sin \alpha}{1 - \cos (\alpha) e^{-\frac{TR}{T_{post}}}} - \frac{TR}{T_{post}}} - \frac{TR}{T_{post}} - \frac{TR}{T_{post}}}{1 - \cos (\alpha) e^{-\frac{TR}{T_{post}}}} - \frac{TR}{T_{post}} - \frac{TR}{T_{post}}} - \frac{TR}{T_{post}}}{1 - \cos (\alpha) e^{-\frac{TR}{T_{post}}}} - \frac{TR}{T_{post}}} - \frac{TR}{T_{post}}}{1 - \cos (\alpha) e^{-\frac{TR}{T_{post}}}}} - \frac{TR}{T_{post}}} - \frac{TR}{T_{post}}} - \frac{TR}{T_{post}}} - \frac{TR}{T_{post}}}{1 - \cos (\alpha) e^{-\frac{TR}{T_{post}}}} - \frac{TR}{T_{post}}} - \frac{TR}{T_{post}}} - \frac{TR}{T_{post}}}{1 - \cos (\alpha) e^{-\frac{TR}{T_{post}}}} - \frac{TR}{T_{post}}} - \frac{TR}{T_{post}}} - \frac{TR}{T_{post}} - \frac{TR}{T_{post}}} - \frac{TR}{T_{post}} - \frac{TR}{T_{post}} - \frac{TR}{T_{post}} - \frac{TR}{T_{post}}} - \frac{TR}{T_{post}} - \frac{TR}{T_$$

This equation indicates that the most important parameters that affect the contrast is T_1 relaxation time.

Mathematical simulations starting from the above reported equation (using $\alpha = 60^{\circ}$ and TR = 40 ms) allows estimating the necessary amount of MnLSI-NPs for achieving a T_1 enh of 50% at the different B₀ fields. This corresponds to the following concentrations of MnLSI:

- ca. 2 mg/mL at 1 T $\,$
- ca. 4 mg/mL at 1.5 T
- ca. 10 mg/mL at 3 T

- ca. 25 mg/mL at 7 T