Supporting Information

Hybrid Theranostic Microbubbles for Ultrasound/Photoacoustic Imaging Guided Starvation/Low-Temperature Photothermal/Hypoxia-Activated Synergistic Cancer Therapy

Feng Tian,^a Xingjian Zhong, ^a JunKai Zhao,^b Yutian Gu, ^a Yadi Fan, ^a Fan Shi, ^a Yu Zhang,^c Youhua Tan,^a Wen Chen,^d Changqing Yi, ^{b,*} and Mo Yang ^{a,*}

^a Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong S. A. R., China

^b Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China. ^c Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology University, Melbourne, Victoria 3000, Australia

^d Department of Electronic and Information Engineering, The Hong Kong Polytechnic

University, Hong Kong S. A. R., China

* Corresponding Authors:

Dr. Changqing Yi, E-mail: <u>yichq@mail.sysu.edu.cn</u>

Prof. Mo Yang, E-mail: mo.yang@polyu.edu.hk

Fig. S1. (a) Photographs of PVAMBs and PDA-PVAMBs in solution. (b) Photographs and microscopy image of PDA-PVAMBs after stored for 1 month at room temperature. Scale bar: 10 μm.

Fig. S2. (a) DLS-based size distribution of PVAMBs, PDA–PVAMBs, and PDA– PVAMBs@GOx. (b) PVA-PDAMBs@GOx stability after dispersed in water, PBS, and culture medium for 1 day.

Fig. S3. (a) The photothermal cycle of the PDA-PVAMBs aqueous solution $(0.5 \times 10^8 \text{ counts/mL})$ for 300 s laser irradiation (808 nm, 1 W/cm²) and 480 s cooling down. (b) Photothermal conversion efficiency calculation based on linear time versus $-\ln\theta$ from the photothermal cycle of Figure S2a.

Fig. S4. Temperature change of 0.5×10⁸ counts/mL PDA-PVAMBs and PDA-PVAMBs@GOx under 808 nm laser irradiation (1 W/cm²) for 5 min.

Fig. S5. O₂ concentration after adding PDA-PVAMBs@GOx solution to hypoxia-treated solution (with/without 1 mg/mL glucose).

Fig. S6. 3D-printed pattern for agarose phantom fabrication for in vitro US and PA imaging.

Fig. S7. Photograph of samples for haemocompatibility testing. Samples from left to right were: 1, 0.8, 0.6, 0.4, 0.2×10⁷ counts/mL of PDA-PVAMBs@GOx, PBS, water.

Fig. S8. Cell viability tests of CT26 cells treated with various concentration of TPZ.

Fig. S9. ROS staining of CT26 cells treated with PDA-PVAMBs@GOx, PDA-PVAMBs +

Laser, and PDA-PVAMBs@GOx + Laser.

Fig. S10 Representative H&E staining images of heart, liver, spleen, kidney, and lung after PBS and PDA-PVAMBs@GOx-TPZ + Laser treatment at day 14. Scale bars: 100 μm.