Supporting Information

A four-in-one pure nanomedicine for synergistic multi-target therapy against breast cancer

Rui Zhang,^{†a} Ge Cheng,^{†a} Shengnan Liu,^b Hongying Lv,^c and Juan Li*^a

^aSchool of Public Health, Jilin University, Changchun, 130021, Jilin, China.

^bChina-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.

^cChinese Academy of Medical Sciences & Peking Union Medical College Institute of Radiation Medicine Chinese Academy of Medical Sciences, Institute of Radiation Medicine, Tianjin, 300192, China.

Supporting data

Fig. S1 Schematic illustration of preparation process of RRX/BMS/CA4/PTX NPs (a) and phase diagram of ternary solute/solvent/water (b).

Fig. S2 SEM image and mapping images of RRX/BMS/CA4/PTX NP by SEM.

Fig. S3 Number of tumor nodules in the lungs after various treatments with PBS, RRX NPs and RRX/BMS/CA4/PTX NPs.

Fig. S4 TEM images of BMS-8, BMS-202 and BMS-1166 NPs (scale bar = 500 nm).

Fig. S5 DLS measurements of size of the BMS-8, BMS-202 and BMS-1166 NPs.

Fig. S6 BMS compounds induce PD-L1 to form dimer due to an identical core scaffold structure [(2-methyl-3-((*p*-tolyloxy)methyl)-1,1'-biphenyl) found in all BMS compounds. The main structural differences between the BMS molecules are highlighted with blue circles. BMS-202 and BMS-1166 are more flexible and the highlighted areas are more easily affected by components of the TME. BMS-1 and BMS-8 have more rigid structures and are therefore better at forming PD-L1 dimer.