Supporting Information

Antibacterial and Immunomodulatory Activities of Physiologically Stable, Self-Assembled Peptide Nanoparticles

Nauman Nazeer¹, Jeffrey R. Simmons², Jan K. Rainey²⁻⁴ Juan Carlos Rodriguez- Lecompte⁵,

Marya Ahmed^{1,6}

Department of Chemistry University of Prince Edward Island, Charlottetown, Prince Edward

Island, Canada, C1A 4P3¹, Department of Biochemistry & Molecular Biology², Department of

Chemistry³, School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H

4R2, Canada⁴; Department of Pathology and Microbiology, Atlantic Veterinary College⁵,

Faculty of Sustainable Design Engineering⁶; University of Prince Edward Island, Charlottetown,

Prince Edward Island, Canada, C1A 4P3

Corresponding email address: marahmed@upei.ca

Sample	Particle size (nm)	Zeta Potential (mV)
DSN aggregates	282.03 ± 100.41	14.14 ± 1.08
FC-DSNs (1:4)	130.96 ± 1.58	8.45 ± 1.23
FC-DSNs (1:2)	113.74 ± 20.32	-0.60 ± 0.04
FC-DSNs (1:1)	159.99 ± 11.86	-15.98 ± 2.88

Table S1. Particle size and zeta potential of FC-DSNs at different FC:peptide weight ratios.

Table S2. Determination of C α and H α amino acid secondary structure through comparison of chemical shifts relative to random coil shifts for amino acids in 100% DMSO.

#	Residue	<i>∆∂</i> Cα	Threshold Helix	Threshold Sheet	Structure	Δ <i>∂</i> Ηα	Threshold Helix	Threshold Sheet	Structure
*	Cys	-1.355	>1.3	<-0.1	Sheet	-0.117	<-0.16	>0.22	Helix
*	Arg	-0.536	>1.3	<-0.1	Coil	-0.079	<-0.16	>0.22	Coil
*	Phe	-1.375	>1.3	<-0.1	Sheet	0.051	<-0.16	>0.22	Coil
*	Lys	-0.701	>1.3	<-0.1	Sheet	-0.12	<-0.16	>0.22	Helix
*	Phe	-1.607	>1.3	<-0.1	Sheet	-0.002	<-0.16	>0.22	Coil
*	Arg	-0.713	>1.3	<-0.1	Sheet	-0.11	<-0.16	>0.22	Helix
*	lle	-0.931	>1.3	<-0.1	Sheet	-0.085	<-0.16	>0.22	Coil
8	Val	-0.565	>1.3	<-0.1	Coil	-0.062	<-0.16	>0.22	Coil
*	lle		>1.3	<-0.1			<-0.16	>0.22	
*	Cys			<-0.1			<-0.16	>0.22	

* indicates ambiguous assignments

#	Residue	ΔδCβ	Threshold Helix	Threshold Sheet	Structure
*	Cys		<-0.3	>0.2	
*	Arg	-0.694	<-0.3	>0.2	Coil
*	Phe	1.761	<-0.3	>0.2	Sheet
4	Lys	-0.38	<-0.3	>0.2	Coil
*	Phe	2.042	<-0.3	>0.2	Sheet
*	Arg	-0.676	<-0.3	>0.2	Coil
*	lle	-1.112	<-0.3	>0.2	Helix
8	Val	-0.552	<-0.3	>0.2	Coil
*	lle	-0.705	<-0.3	>0.2	Helix
*	Cys		<-0.3	>0.2	

Table S3. Determination of C β amino acid secondary structure through comparison of chemical shifts relative to random coil shifts for amino acids in 100% DMSO.

* indicates ambiguous assignments

Figure S1. Chemical structure of CRFKFRIVIC peptide.

Figure S2. Mass spectrometry data for CRFKFRIVIC peptide.

Figure S3. RP-HPLC chromatogram of CRFKFRIVIC peptide.

Figure S4. Effect of pH on particle size of FC-DSNs.

Figure S5. RP-HPLC chromatograms of A) DSNs in water: acetonitrile solution with 0.1% TFA,B) DSNs in Tris-buffer C) DSNs in Tris-buffer in the presence of trypsin-EDTA.

Figure S6. Optical microscopy images of thin films cast from (A) CRFKFRIVIC peptide in DMSO; (B) β -CD-DSNs; and (C) FC-DSNs. Red boxes and points are illustrative of sampling positions at which FTIR spectra were acquired for a given sample; scale bars are 50 μ m.

Figure S7. Concentration-dependent antibacterial activity of DSNs, FC-DSNs, and β-CD-DSNs after 4-hour treatment against (**A**) *E. coli* (ATCC 25922); (**B**) *S. aureus* (ATCC 25923); (**C**) *S. enterica* (ATCC 13076); (**D**) *L. monocytogenes* (ATCC 19115); and (**E**) *B. subtilis* (ATCC 6051).

Figure S8. Time-dependent antibacterial activity of DSNs, FC-DSNs, and β -CD-DSNs at a peptide concentration of 25 μ M against (A) *E. coli* (NEB 5 α) and (B) *B. subtilis* (ATCC 6051).

Figure S9. Antibacterial activity of DSNs and its macromolecular analogues in the presence of serum proteins. * indicates p-value < 0.05, ** indicates p-value < 0.01, and ns indicates no statistically significant difference.

Sample	Mean Absorbance @ 420 nm
Blank	0.0718 ± 0.0004
DSNs (40 µM)	0.087 ± 0.0002

Figure S10. Calibration of _L-cysteine hydrochloride monohydrate by Elman's assay.

Figure S11. Antibacterial activity of DSNs and β -CD-DSNs in the presence of 2mM GSH. * indicates p-value < 0.05 and ** indicates p-value < 0.01.

Figure S12. Uptake of TAMRA-labelled peptide nanoparticles in (A) E. coli and (B) B. subtilis.

Figure S13. Uptake of CF in **(A-B)** *E. coli* and **(C-D)** *B. subtilis.* A and C shows concentrationdependent change in membrane permeability after 30 minutes of incubation with samples. B and D shows time-dependent change in membrane permeability after treatment with 25 μ M of DSNs and equimolar concentrations of FC-DSN and β -CD-DSN.

Figure S14. Cell viability of **(A)** DF-1 chicken fibroblasts; **(B)** Caco-2 cells; **(C)** Caco-2 cells treated with 100 μ g/mL LPS; and **(D)** Caco-2 cells treated with 100 μ g/mL LTA. * indicates p-value < 0.05 compared to control treatment and ** indicates p-value < 0.01 compared to control treatment.

Figure S15. Hemolytic activity of peptide-based nanoparticles.