Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Supporting Information

A low-swelling and toughened adhesive hydrogel with anti-

microbial and hemostatic capacities for wound healing

Liwei Zhang ^{a,b}, Yajie Zhang ^a, Fanshu Ma ^a, Xingzhu Liu ^a, Yangzhong Liu^c, Yi Cao ^{a,*}, Renjun Pei^{a,*}

^a CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.

^b Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China.

^c Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.

*Corresponding author.

Tel: 86-512-62872776 (Renjun Pei) E-mail: <u>rjpei2011@sinano.ac.cn</u>

Fig. S1 ¹NMR spectra of F127 and F127DA.

Fig. S2 ¹NMR spectra of QCS and QCSDA.

Fig. S3 ¹NMR spectra of SF.

Fig. S4 The average size of pore in the hydrogels. Mean \pm SD, n = 10.

Fig. S5 The inset images showed the water contact angle of the corresponding samples. (A) Gel2 (B) Gel2TA4 (C) Gel2TA16.

Fig. S6 (A) The tensile stress of hydrogel AHA/CCS. (B) The tissue adhesion strength of high-swelling hydrogel AHA/CCS. * $p \le 0.05$.

Fig. S7 OD_{450nm} value of L929 cells on the Cell Culture Plates from 1 to 5 days. *p ≤ 0.05 , **p ≤ 0.01 , and ***p ≤ 0.001 .