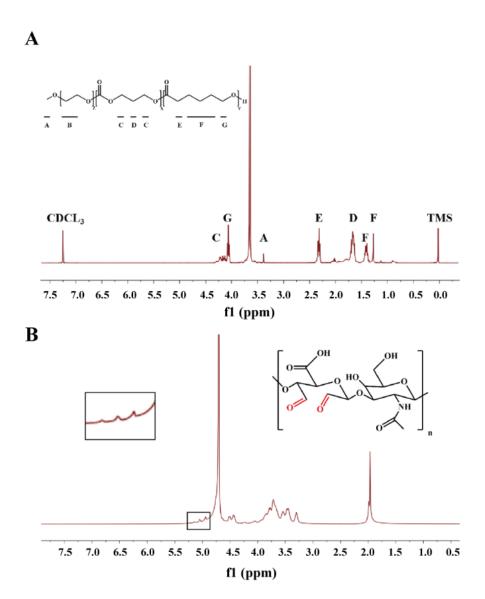
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

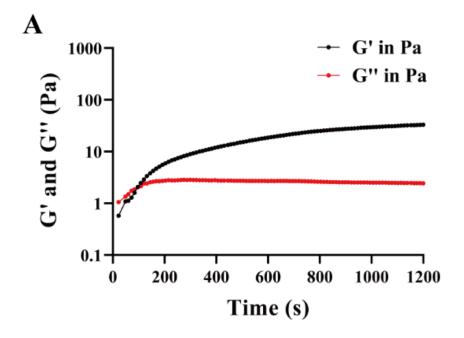
Supplementary Materials

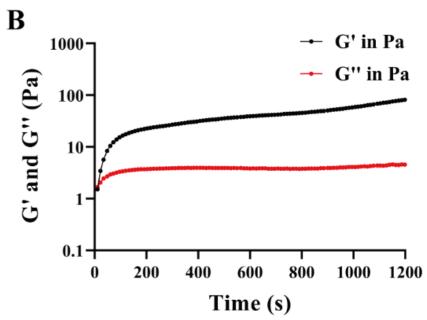
An *in situ* spontaneously-forming micelle-hydrogel system with programable release for sequential therapy of anaplastic thyroid cancer

Xi Yang^{1,#}, Lingyun Zhang^{2,3,#}, Lingnan Zheng¹, Yan Wang⁴, Ling Gao¹, Rui Luo⁴, Xinchao Li⁴, Changyang Gong⁴, Han Luo^{2*}, Qinjie Wu^{4,*}

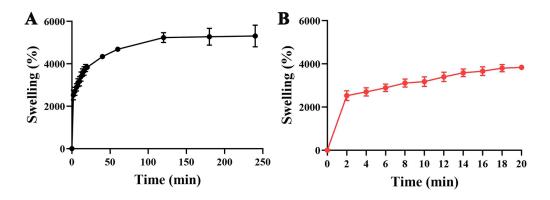

- ¹ Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- ² Department of Thyroid and Parathyroid Surgery, Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- * To whom correspondence should be addressed (Q Wu and H Luo). E-mail: cellwqj@163.com and luohan-hx@scu.edu.cn.

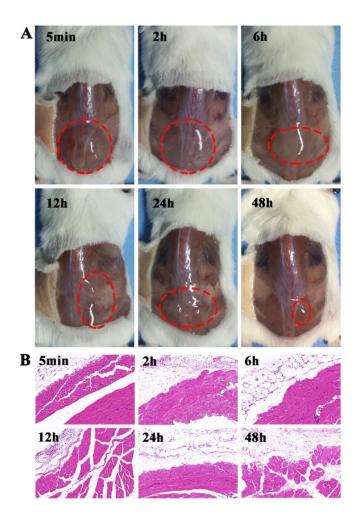
[#] These authors contributed equally to this work.


Supplementary Table 1. Characteristics of ATC cell lines C643 and 8305C

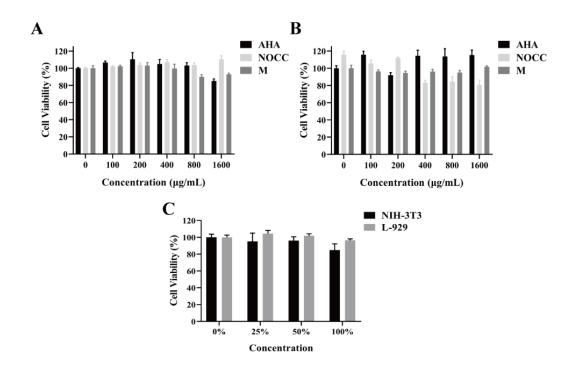

Cell Line	C643	8305C
Year of establishment	1987	1993
Patient Age	76	67
Patient Gender	Male	Male
Derivation	Primary Tumor	Primary Tumor
BRAF	-	p.V600*
HRAS	p.G13R*	-
TP53	p.R248Q	p.R273C
TERT promoter	c124C>T	c146C>T

^{*} Key genetic driver.

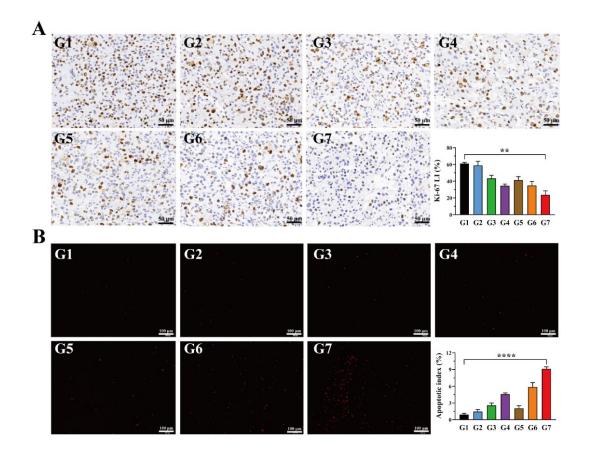

Supplementary Figure 1. ¹*H*-NMR spectrum of MPEG–P(CL-*ran*-TMC) in CDCl₃ (A) and AHA (B).



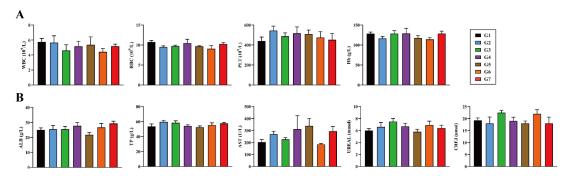
Supplementary Figure 2. Rheological analysis for the drug loaded NOCC/AHA hydrogel.


Time-dependence of storage modulus (G'), loss modulus (G") for the drug loaded NOCC/AHA hydrogel. (A) DDP-hydrogel; (B) P_m -hydrogel.

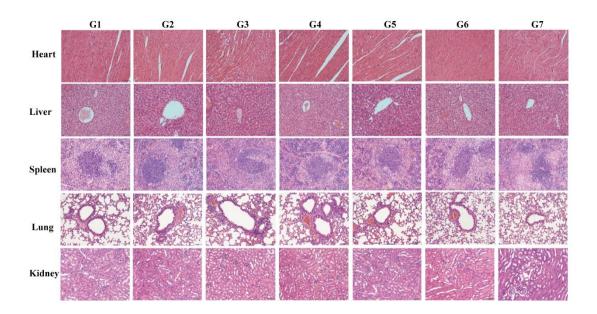
Supplementary Figure 3. (A&B) Swelling kinetics of NOCC/AHA hydrogel in the different time.



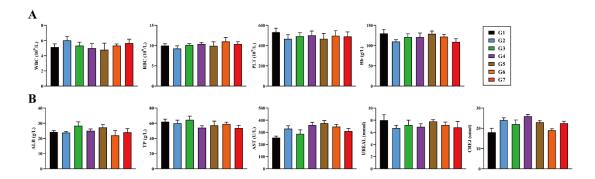
Supplementary Figure 4. *In vivo* degradation and biocompatibility of the NOCC-AHA hydrogel.(A) Gross observation of degradation assay in the different time; (B) Histological observations of biocompatibility assay in the different time.


Supplementary Figure 5. Effect of AHA, NOCC, MPEG-P(CL-ran-TMC) and NOCC/AHA hydrogel extracts on cell viability measured by MTT assay.

(A) Cytotoxicity on NIH-3T3 and (B) L929 cells after 2-day incubation with AHA, NOCC or MPEG–P(CL-ran-TMC) at different concentrations; (C) Cytotoxicity on NIH-3T3 cells and L929 cells after 2-day incubation with the NOCC/AHA hydrogel extracts. Data were presented as mean \pm SD (n = 3).

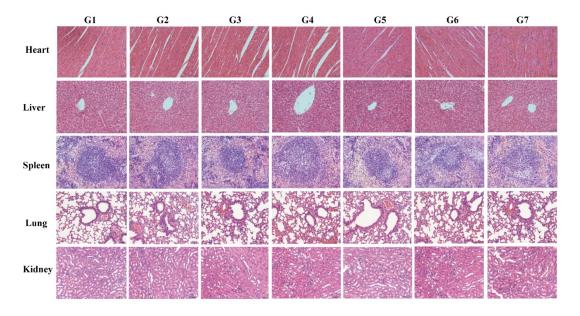

Supplementary Figure 6. Ki-67 immunohistochemical and TUNEL immunofluorescent staining of 8305C tumors.

(A) Representative Ki-67 immunohistochemical images of 8305C tumors and mean Ki-67 LI for each group (G1: NS i.t., G2: Micelle-hydrogel i.t., G3: P_m + DDP i.v., G4: P_m + DDP i.t., G5: P_m -hydrogel i.t., G6: DDP-hydrogel i.t., G7: iMHS i.t.). Scale bar = 50 μ m; (B) Representative TUNEL immunofluorescent images of 8305C tumors and mean apoptotic index for each group. Scale bar = 100 μ m. LI: labelling index.



Supplementary Figure 7. Complete blood count and serum biochemistry study of the C643 subcutaneous tumor-bearing mice.

(A) Complete blood count including white blood cell (WBC), red blood cell (RBC), hemoglobin (Hb) and platelet (PLT) of each group; (B) Serum chemistry profile including total protein (TP), albumin (ALB), aspartate transaminase (AST), blood urea (UREAL), creatinine (CREJ) of each group.



Supplementary Figure 8. Representative hematoxylin-eosin staining images of major organs (heart, lung, liver, spleen, and kidney) of each group in the C643 subcutaneous tumor-bearing mice.

Supplementary Figure 9. Complete blood count and serum biochemistry study of the 8305C subcutaneous tumor-bearing mice.

(A) Complete blood count including white blood cell (WBC), red blood cell (RBC), hemoglobin (Hb) and platelet (PLT) of each group; (B) Serum chemistry profile including total protein (TP), albumin (ALB), aspartate transaminase (AST), blood urea (UREAL), creatinine (CREJ) of each group.

Supplementary Figure 10. Representative hematoxylin-eosin staining images of major organs (heart, lung, liver, spleen, and kidney) of each group in the 8305C subcutaneous tumor-bearing mice.