Electronic Supplementary Information

Nanostructural control of transparent hydroxyapatite nanoparticle films using a citric acid coordination technique

Zizhen Liu, 1 Takuya Kataoka, 1 Sadaki Samitsu, 2 Daisuke Kawagoe, 3 Motohiro Tagaya 1,*

1 Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
2 Data-driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
3 Department of Materials Chemistry and Bioengineering, Oyama National College of Technology, 771 Nakakuki, Oyama, Tochigi 323-0806, Japan

* Author to whom correspondence should be addressed:
Tel: +81-258-47-9345; Fax: +81-258-47-9300
E-mail: tagaya@mst.nagaokaut.ac.jp

ESI-1
Fig. S1 TEM images of the surface layers between top and internal surfaces of (a) 0Cit/HA, (b) 1Cit/HA, (c) 2Cit/HA and (d) 3Cit/HA where the average surface layer thicknesses were 0, 1.7, 2.2 and 4.1 nm, respectively. (e) Illustration of the possible surface layer structures of the Cit/HA nanoparticles.
Figure S2

Fig. S2 Particle size distribution of 1Cil/HA dispersed in PBS.
Figure S3

(a) Transmittance and haze value changes of the cal-Cit/HA-F films with the coordinated amount of Cit, and the photographs of (b) cal-0Cit/HA-F and (c) cal-3Cit/HA-F.
Fig. S4 GD-OES elemental depth profiles of (a) 0Cit/HA-F, (b) 1Cit/HA-F, (c) 2Cit/HA-F and (d) 3Cit/HA-F.
Figure S5

Fig. S5 Microscopic photographs of (a, e) cal-0Cit/HA-F, (b, f) cal-1Cit/HA-F, (c, g) cal-2Cit/HA-F and (d, h) cal-3Cit/HA-F before and after the tape peeling test and (i) their reduction rate of the film areas.
Figure S6

Optical microscope images of the cell adhesion on 0Cit/HA-F at the culture time of 3 h ((a) lower and (b) higher magnification).
Scheme S1 Illustration of the possible nanospace formation in the Cit/HA-F films based on the results in the N$_2$ adsorption and desorption isotherms.
Scheme S2. Illustration of the changes in (a–d) arrangement states and (a′–d′) interaction forces between the nanoparticles during the dry process of 3Cit/HA-F. Here, only the nanoparticles in the bottom layer are discussed for easily understanding.
Fig. S7. SEM and AFM surface topographic images of (a, b) cal-0Cit/HA-F and (c, d) cal-3Cit/HA-F, and the RMS values of cal-0Cit/HA-F and cal-3Cit/HA-F were 7.69 nm and 4.59 nm, respectively. (e) Nanoparticle size distribution in the cal-3Cit/HA-F.